Acumen Hypotension Prediction Index Software
Die Acumen Hypotension Prediction Index (HPI) Software ist eine innovative Technologie, die Ärzten Informationen über die Wahrscheinlichkeit eines Patienten liefert, der zu einem hypotensiven Ereignis neigt.*
Im Rahmen mehrerer Studien wurden die folgenden Vorteile der Acumen HPI Software gezeigt:
- Statistisch signifikante Verringerung von Hypotonien beim Vergleich von nicht-kardialen chirurgischen Eingriffen mit der Standardversorgung, wenn die Software in Kombination mit einem Behandlungsprotokoll verwendet wird1,2
- Besserer prognostischer Wert im Vergleich zu standardmäßigen hämodynamischen Parametern, wie Herzzeitvolumen (CO), Schlagvolumen (SV) und Veränderungen des mittleren arteriellen Drucks (MAP)3
- Bewährte und zuverlässige Genauigkeit4
Hier finden Sie die Ergebnisse dieser klinischen Studien.
*Ein hypotensives Ereignis ist definiert als MAP <65 mmHg für eine Dauer von mindestens einer Minute.
Referenzen:
- Wijnberge, M., Geerts, B., Hol, L., Lemmers, N., Mulder, M., Berge, P., Schenk, J., Terwindt, L., Hollman, M., Vlaar, A., Veelo, D. (2020) Effect of a Machine Learning-Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA Online, February 17, 2020. doi:10.1001/jama.2020.0592 https://jamanetwork.com/journals/jama/article-abstract/2761469
- Schneck, E., Schulte, D., Habig, L., Ruhrmann, S., Edinger, F., Markmann, M., Habicher, M., Rickert, M., Koch, C., Sander, M. (2019) Hypotension Prediction Index based protocolized haemodynamic management reduces the incidence and duration of intraoperative hypotension in primary total hip arthroplasty: a single centre feasibility randomized blinded prospective interventional trial. Journal of Clinical Monitoring and Computing online, November 29, 2019. https://link.springer.com/article/10.1007/s10877-019-00433-6
- Davies SJ, Vistisen ST, Jian Z, et al. Ability of an arterial waveform analysis-derived hypotension prediction index to predict future hypotensive events in surgical patients. Anesth Analg 2020;doi: 10.1213/ANE.0000000000004121. https://journals.lww.com/anesthesia-analgesia/Citation/2020/02000/Ability-of-an-Arterial-Waveform-Analysis-Derived.16.aspx
- Hatib, F., Zhongping, J., Buddi, S., Lee, C., Settels, J., Sibert, K., Rinehart, J., Cannesson, M. (2018). Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology 129, 663-74. https://anesthesiology.pubs.asahq.org/article.aspx?articleid=2685008
- Salmasi, V., Maheshwari, K., Yang, G., Mascha, E.J., Singh, A., Sessler, D.I., & Kurz, A. (2017). Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney injury and myocardial injury. Anesthesiology, 126(1), 47-65.
- Sun, L.Y., Wijeysundera, D.N., Tait, G.A., & Beattie, W.S. (2015). Association of Intraoperative Hypotension with Acute Kidney Injury after Elective non-cardiac Surgery. Anesthesiology, 123(3), 515-523.
- Walsh, M., Devereaux, P.J., Garg, A.X., Kurz, A., Turan, A., Rodseth, R.N., Cywinski, J., Thabane, L., & Sessler, D.I. (2013). Relationship between Intraoperative Mean Arterial Pressure and Clinical Outcomes after non-cardiac Surgery. Anesthesiology, 119(3), 507-515.
- Kahn, Alonso-Coello and Devereaux, Myocardial injury after non-cardiac surgery, Curr Opin Cardiol, 2014, 29:307-311
- Devereaux and Sessler, Cardiac complications in patients undergoing major non-cardiac surgery, N Engl J Med, 2015, 373(23):2258-2269.
- Sellers, D., Srinivas, C., Djaiani, G. (2018). Cardiovascular complications after non-cardiac surgery. Anaesthesia, 73 (Suppl. 1), 34 - 42.
- van Waes, J., Nathoe, H., Graaff, J., Kemperman, H., de Borst, G., Peelen, L., van Klei, W. (2013). Myocardial Injury After Noncardiac Surgery and its Association With Short-Term Mortality. Circulation, 127, 2264 - 2271.
- Wijnberge et al. HYPE Protocol supplement: Intraoperative implementation of the hypotension probability indicator (HPI) algorithm – A pilot randomized controlled clinical trial, Supplemental to Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: The HYPE Randomized Clinical Trial. JAMA 2020.16 Appendix I.
- Vining, David & Gladish, Gregory. (1992). Receiver operating characteristic curves: a basic understanding. Radiographics : a review publication of the Radiological Society of North America, Inc. 12. 1147-54. 10.1148/radiographics.12.6.1439017.
- Huang, Jin, and C.X. Ling. (2005) Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 3, 2005, pp. 299–310., doi:10.1109/tkde.2005.50.
Please update your browser
Please update to a current version of your preferred browser, this site will perform effectively on the following:
Unable to update your browser?If you are on a computer, that is maintained by an admin and you cannot install a new browser, ask your admin about it. If you can't change your browser because of compatibility issues, think about installing a second browser for browsing and keep this old one for compatibility
Inhalt mit Bezug zu Produkten von Edwards Lifesciences ist ausschliesslich für Angehörige medizinischer Fachkreise bestimmt. Klicken Sie „OK“ um zu bestätigen, dass Sie Angehöriger der medizinischen Fachkreise sind und fortzufahren. Andernfalls klicken Sie „Schliessen“ für Inhalte ohne Produktbezug.