エドワーズライフサイエンス
EV1000 クリティカルケアモニター
取扱説明書
Edwards Lifesciences EV1000 クリティカルケアモニター取扱説明書

当社では製品を継続的に改善しているため、価格や仕様は予告なく変更される場合があります。お客様からの情報提供、または製品の改良過程で生じた本取扱説明書の変更は、再発行時に行います。本取扱説明書を通常どおりに使用しているときに、誤植、欠落、またはデータの誤りにお気づきになった場合は、エドワーズライフサイエンス株式会社にご連絡ください。

商標 Edwards、エドワーズ、Edwards Lifesciences、エドワーズライフサイエンス、定型化されたEロゴ、EV1000、FloTrac、フロートラック、PediaSat、Swan、Swan-Ganz、スワンガンツ、TruWave、トゥルーウェーブ、Vigileo、ビジレオ、Vigilance、ビジランス、Vigilance II、VolumeView およびボリュームビューはEdwards Lifesciences Corporationの商標です。その他の商標はそれぞれの商標権者に帰属します。

Copyright © 2018 Edwards Lifesciences Corporation. All rights reserved.
Manual Version 1.5 Release Date: 01/07/2018
Software Version 1.9

EC REP
Edwards Lifesciences Services GmbH
Edisonstrasse 6
85716 Unterschleissheim, Germany

作成：2018年4月 第7版
医療機器認証番号：22300BZX00363
管理医療機器、特定保守管理医療機器、修理業第2区分機器
一般的名称：動脈圧心拍出量計（JMDNコード：70050000）
販売名：EV1000 クリティカルケアモニター
本書の使用方法

Edwards Lifesciences EV1000 クリティカルケアモニターの取扱説明書は16の章、7つの付録、そして索引で構成されています。本書にある図は参考用にすぎず、ソフトウェアは絶えず改良されているため画面の正確な複製でないこともあります。

<table>
<thead>
<tr>
<th>章</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EV1000の概要: EV1000システムの概要を示します。</td>
</tr>
<tr>
<td>2</td>
<td>安全と記号: 本書で使われている「警告」、「注意」、「注記」の定義、およびモニターやデータボックス上にあるラベルを説明します。</td>
</tr>
<tr>
<td>3</td>
<td>開梱および初期設定: EV1000クリティカルケアモニターとケーブルを設定し、初めてシステムを使用する際の方法について説明します。</td>
</tr>
<tr>
<td>4</td>
<td>EV1000クイックスタートガイド: 生体情報モニターに熟練した医師とユーザーが、モニターをすぐに使用できるように、使用方法を説明します。</td>
</tr>
<tr>
<td>5</td>
<td>EV1000のナビゲーション: タッチパネルやモニタリングに使用するケーブルの使用方法について説明します。</td>
</tr>
<tr>
<td>6</td>
<td>モニターの表示オプション: 患者情報、言語および国際単位、アラーム音量、日付・時刻など、モニター画面の様々な設定について説明します。またモニター画面の種類を選択する方法についての説明もしています。</td>
</tr>
<tr>
<td>7</td>
<td>フロートラック連続モニタリング: 心拍出量、1回拍出量、1回拍出量変化、および体血管抵抗算出の設定と操作方法について説明します。</td>
</tr>
<tr>
<td>8</td>
<td>ボリュームビュー・モニタリング: 開発のTPTDおよび連続心拍出量: ボリュームビュー・システムと使用した場合のTPTDと算出パラメータモニタリングの設定と操作方法について説明します。</td>
</tr>
<tr>
<td>9</td>
<td>オキシメトリーモニタリング: オキシメトリー(酸素飽和度)測定のキャリブレーションおよび操作方法について説明します。</td>
</tr>
<tr>
<td>10</td>
<td>フィジオビューおよびフィジオツリーモニタリング画面: モニタリングパラメータとその相互関係を視覚的に表示するフィジオビュー画面とフィジオツリー画面について説明します。</td>
</tr>
<tr>
<td>11</td>
<td>強化されたパラメータトラッキング: EV1000クリティカルケアモニターで利用できる目標指向型療法の実施に役立つツールについて説明します。</td>
</tr>
<tr>
<td>12</td>
<td>アクションと分析: EV1000システムを使用してモニタリングされた値の変化率の算出方法、データベース分析の実行方法、およびイベントをレビューする方法について説明します。</td>
</tr>
<tr>
<td>13</td>
<td>デモモードおよびデータダウンロード: EV1000クリティカルケアモニターを使用したトレーニングやデモの実行方法、またモニタリングデータをUSBドライブにダウンロードする方法について説明します。</td>
</tr>
<tr>
<td>14</td>
<td>ヘルプとトラブルシューティング: ヘルプシステムの使用方法の説明と、フォルトと警告の一覧があります。</td>
</tr>
</tbody>
</table>

付録

<table>
<thead>
<tr>
<th>章</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>仕様</td>
</tr>
<tr>
<td>B</td>
<td>患者パラメータの計算式</td>
</tr>
<tr>
<td>C</td>
<td>モニター設定とデフォルト設定</td>
</tr>
<tr>
<td>D</td>
<td>EV1000単位換算</td>
</tr>
<tr>
<td>E</td>
<td>システムのメンテナンス、点検およびサポート</td>
</tr>
<tr>
<td>F</td>
<td>ガイドラインと適合の宣言</td>
</tr>
<tr>
<td>G</td>
<td>用語集</td>
</tr>
</tbody>
</table>

索引
目次

第1章: EV1000 の概要
モニタリングパラメータ...1-1
フロートラックセンサー: 連続測定値..1-1
ボリュームビュー: 間欠的測定値..1-2
オキシメトリー...1-2
適応...1-2
フロートラック動脈圧心拍出量 (APCO)..1-3
ボリュームビュー経肺熱稀釈 (TPTD)..1-3
ボリュームビュー心拍出量 (VV-CO)..1-3
オキシメトリー...1-3
EV1000 クリティカルケアモニターの取扱説明書.........................1-4
頭字語および略語..1-4

第2章: 安全と記号
安全に関する識別記号..2-1
警告...2-1
注意...2-3
モニター画面上の記号..2-6
本体の記号...2-7
梱包箱に記載されている記号..2-8
準拠規格...2-8

第3章: 開梱および初期設定...3-1
開梱 ...3-2
内容物...3-2
モニター用アクセサリー...3-2
モニターの設置...3-4
取り付けに関する推奨事項..3-4
モニターの接続...3-4
ケーブルの接続...3-5
初回起動...3-6
言語の選択...3-6

第4章: EV1000 クイックスタートガイド..4-1
フロートラックシステムと圧モニタリング....................................4-1
フロートラックセンサーまたは動脈圧および中心静脈圧のゼロ点調整..4-2
中心静脈圧の手動入力（SVR および SVRI を計算するため）.........4-2
ボリュームビュー心拍出量および間欠的 TPTD モニタリング.......4-3
間欠的 TPTD モニタリング...4-4
フロートラックモードからボリュームビュー・モードに切り替え
TPTD モニタリングと CO 測定を行う場合..................................4-4
中心静脈圧の手動入力（SVR および SVRI を計算するため）.........4-5
オキシメトリー・モニタリング...4-5
体外キャリブレーション..4-5
体内キャリブレーション..4-6

第5章: EV1000 のナビゲーション...5-1
ナビゲーションバー..5-1
モニタリングビュー..5-2
パラメータの変更..5-2
第1章: 基本情報 ...

第2章: モニタリング設定 ...

第3章: モニタリング画面のナビゲーション ...

第4章: フレーム ...

第5章: モニター設定 ...

第6章: モニターの表示オプション ...

第7章: フロークラック連続モニタリング ...

第8章: ボリュームビューモニタリング: 間欠的 TPTD および連続心拍出量 ...

第9章: オキシメトリーモニタリング ...

アラーム/ターゲットの変更 ...5-2
グラフトトレンド ...5-2
動脈圧波形 (ART) 表示 ...5-3
インターベンションイベント ..5-3
表トレンド ...5-5
表トレンドスクロールモード ...5-6
ビッグナンバー ...5-6
フィジオビュー画面 ...5-6
コックピット画面 ...5-6
フィジオメトリ ...5-7
ステータスインジケータ ...5-7
モニタリング画面のナビゲーション ...5-8
垂直スクロール ...5-8
情報バー ...5-9
ステータスバー ...5-10
第10章：フィジオビューおよびフィジオツリーモニタリング画面

第11章：強化されたパラメータトラッキング

第12章：アクションと分析

第13章：デモモードおよびデータダウンロード

第14章：ヘルプとトラブルシューティング

第15章：EV1000システムのアクセサリー
付録

付録 A: 仕様
- パラメータ .. A-1
- アクセサリー .. A-1

付録 B: 患者パラメータの計算式 .. B-1

付録 C: モニター設定とデフォルト設定
- 患者データ .. C-1
- トレンドスケールのデフォルト制限値 .. C-1
- パラメータの表示および設定可能なアラーム/ターゲットの範囲 .. C-2
- アラームおよびターゲットのデフォルト値 .. C-3
- 言語デフォルト設定 .. C-4

付録 D: EV1000 単位換算
- ポンドとキログラム .. D-1
- インチとセンチ .. D-1
- mmHg と kPa .. D-1
- g/dL と mmol/L (ヘモグロビン) D-1
- °F（華氏）と°C（摂氏） .. D-1

付録 E: システムのメンテナンス、点検およびサポート
- モニターの清掃 .. E-1
- システムケーブルの清掃 .. E-1
- オプティカル・モジュールの清掃 E-1
- ケーブル/コネクターの清掃と消毒 E-2
- 点検およびサポート .. E-2
- エドワーズライフサイエンス株式会社の所在地 E-3
- モニターの処分 .. E-3
- 予防メンテナンス .. E-3
- アラームシグナルのテスト .. E-3
- 保証 ... E-3

付録 F: ガイドラインと適合の宣言
- 電磁両立性 (EMC) .. F-1
- 使用について .. F-1

付録 G: 用語集 .. G-1

添付 ... 1

索引 ... 1
図 3-1 EV1000 パッケージの中身...3-1
図 3-2 EV1000 のケーブル接続 ..3-5
図 3-3 起動画面 ...3-6
図 3-4 言語選択画面..3-6
図 4-1 APCO フロートラック接続 ..4-1
図 4-2 パラメータ設定 ..4-1
図 4-3 患者データの入力画面 ...4-1
図 4-4 アラームとターゲットの設定 ...4-2
図 4-5 アクション ...4-2
図 4-6 ゼロ点&波形画面 ..4-2
図 4-7 TPTD モニタリング図 ...4-3
図 4-8 CVC マニフォルド ...4-3
図 4-9 TPTD モニタリング図 ...4-4
図 4-10 オキシメトリーモジュールの接続 ...4-5
図 5-1 ナビゲーションバー ..5-1
図 5-2 モニター画面選択ウィンドウの例 ..5-2
図 5-3 パラメータの変更 ...5-2
図 5-4 グラフトレンド画面—動脈圧波形表示 ..5-3
図 5-5 グラフトレンド—インターバンション ...5-4
図 5-6 グラフトレンド画面—インターバンション情報パルーン ...5-4
図 5-7 表トレン画面 ..5-5
図 5-8 表トレンドの表示間隔ポップアップ ..5-5
図 5-9 ビッグナンバー画面 ...5-6
図 5-10 フィジオビュー画面 ..5-6
図 5-11 コックピット画面 ..5-7
図 5-12 フィジオツリー画面 ..5-7
図 5-13 パラメータグローブ ..5-7
図 5-14 レビューリストの垂直スクロール ..5-8
図 5-15 選択リストの垂直スクロール ..5-8
図 5-16 情報バー 動脈圧センサーが接続されていない場合 ...5-9
図 5-17 情報バー フロートラックモード ...5-9
図 5-18 情報バー ボリュームビューモード ...5-9
図 5-19 画面ロックポップアップ ..5-9
図 5-20 画面ロック ..5-10
図 5-21 ステータスバー ..5-10
図 6-1 新規または継続選択画面 ..6-1
図 6-2 モニター設定 ...6-2
図 6-3 モニター基本設定 ..6-2
図 6-4 時刻／日付設定 ..6-3
図 6-5 モニター設定 ..6-3
図 6-6 シリアルポートのセットアップ ..6-4
図 6-7 パラメータ設定 ..6-4
図 6-8 アラーム／ターゲット設定 ...6-6
図 6-9 カスタムデフォルトのアラーム／ターゲット設定 ..6-7
図 6-10 アラームとターゲット設定 ..6-7
図 6-11 時間の間隔と平均設定 ..6-8
図 6-12 グラフトレンド画面 ..6-8
図 6-13 スケール調整 ..6-8
図 6-14 表示間隔ポップアップ ..6-9
図 7-1 CO モニタリング中のグローブ ...7-1
図 7-2 フロートラックセンサーの接続 ...7-2
表

表 1-1 フロートラック連続パラメータ... 1-1
表 1-2 ボリュームビュー間欠的パラメータ.. 1-2
表 1-3 オキシメトリーパラメータ..1-2
表 1-4 頭字語、略語...1-4
表 2-1 モニタ画面の記号...2-6
表 2-2 本体の記号...2-7
表 2-3 棚包箱に記載されている記号..2-8
表 2-4 準拠規格...2-8
表 3-1 モニタリング用アクセスリー..3-2
表 3-2 モニタリング用アクセサリー-静脈血酸素飽和度..................................3-3
表 5-1 インターベーションイベント...5-4
表 5-2 グラフトレインのスクリーン速度...5-5
表 5-3 表トレンドのスクロール速度...5-6
表 5-4 SQL レベル...5-8
表 6-1 ターゲットステラスインジケータの色..6-5
表 6-2 ターゲットのデフォルト..6-6
表 8-1 推奨される注入液容量...8-3
表 9-1 シグナルクオリティーインジケータレベル...9-1
表 9-2 体外キャリプレーションのオプション..9-3
表 9-3 体内キャリプレーションのオプション...9-4
表 11-1 GDT トラックリングにおけるターゲットインジケータの色................11-2
表 12-1 レビューできるイベント...12-2
表 14-1 データボックス通信および電源ランプ..14-2
表 14-2 システムエラー..14-3
表 14-3 数値キーパッドエラー...14-3
表 14-4 CO/SV のフォルトおよび警告..14-4
表 14-5 CO/SV のトラブルシューティング...14-6
表 14-6 TPTD のフォルトおよび警告..14-7
表 14-7 TPTD の注意..14-9
表 14-8 オキシメトリーのフォルトおよび警告..14-10
表 14-9 オキシメトリーの注意...14-11
表 14-10 オキシメトリーの一般的トラブルシューティング..........................14-11
表 14-11 CVP のフォルトおよび警告..14-11
表 14-12 CVP のトラブルシューティング...14-12
表 A-1 物理的および機械的仕様..A-1
表 A-2 環境仕様...A-1
表 A-3 基本パラメータ..A-1
表 A-4 フロートラック/ボリュームビュー..A-1
表 A-5 オキシメトリー...A-1
表 A-6 TPTD..A-2
表 A-7 その他のパラメータ..A-2
表 A-8 体内キャリプレーション ScvO2/SvO2/HGB/Hct の範囲およびデフォルト ...A-2
表 A-9 EV1000 システムアクセサリー...A-3
<table>
<thead>
<tr>
<th>表</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-10</td>
<td>技術的仕様</td>
</tr>
<tr>
<td>B-1</td>
<td>心機能プロファイルの式</td>
</tr>
<tr>
<td>C-1</td>
<td>患者情報</td>
</tr>
<tr>
<td>C-2</td>
<td>トレンドスケールの制限値およびデフォルト値</td>
</tr>
<tr>
<td>C-3</td>
<td>設定可能なアラームおよびターゲットの範囲</td>
</tr>
<tr>
<td>C-4</td>
<td>パラメータアラームのレッドゾーンおよびターゲットのデフォルト値</td>
</tr>
<tr>
<td>C-5</td>
<td>言語デフォルト設定</td>
</tr>
<tr>
<td>F-1</td>
<td>準拠に必要なアクセサリー、ケーブルおよびセンサーの一覧</td>
</tr>
<tr>
<td>F-2</td>
<td>エミッション</td>
</tr>
<tr>
<td>F-3</td>
<td>携帯形および移動形 RF通信装置と EV1000 クリティカルケアモニター間の推奨分離距離</td>
</tr>
<tr>
<td>F-4</td>
<td>イミュニティ（静電気放電、パースト、サージ、電圧ディップ、電源周波数帯域）</td>
</tr>
<tr>
<td>F-5</td>
<td>イミュニティ（放射 RF と伝導 RF）</td>
</tr>
</tbody>
</table>
第1章：EV1000の概要

EV1000システムは酸素運搬の重要な構成要素や酸素需給バランスの評価に関連する血行動態パラメータの測定を連続、または間欠的に行うモニタリングプラットフォームです。EV1000システムは患者の状態を評価し、プリロード（前負荷）、アフタロード（後負荷）、コントラクタリティ（収縮力）を管理し、酸素運搬を最適化するための臨床判断をサポートします。また、EV1000は肺水腫の指標とされる肺血管外水分量（EVLW）を評価することもできます。

動脈ラインからEdwards COセンサーを介して得られる連続パラメータは、心拍出量（CO）、脈拍数（PR）、1回拍出量（SV）、および1回拍出量変化（SVV）があります。中心静脈圧をモニタリングするための圧トランスデューサを併用すると、連続的に体血管抵抗（SVR）を測定することができます。

連続オキシメトリー（静脈血酸素飽和度）測定は酸素運搬量と酸素消費量のバランスをモニタリングするための貴重なツールです。連続オキシメトリー測定は、Edwards製オキシメトリークテールを使用して行われます。

間欠的パラメータ測定には、ボリュームビューカテーテル、CVCマニフォールド、および中心静脈圧の測定が必要です。間欠的パラメータには間欠的拍出量（CO）、間欠的1回拍出量（ISV）、間欠的体血管抵抗（SVR）、全拡張終期容量（GEDV）、および肺血管外水分量（EVLW）ががあります。

EV1000モニターでは次の血行動態パラメータを測定、表示することができます。

モニタリングパラメータ

フロートラックセンサー：連続測定値

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>心拍出量（CO）</td>
<td>心室から1分間に駆出される血液量の連続評価値（単位：リットル/分）</td>
</tr>
<tr>
<td>心係数（CI）</td>
<td>患者の体表面積で補正された心拍出量</td>
</tr>
<tr>
<td>拡張期圧（DIA）</td>
<td>拡張期圧</td>
</tr>
<tr>
<td>平均動脈圧（MAP）</td>
<td>1回の心臓周期の平均全身血圧</td>
</tr>
<tr>
<td>脈拍数（PR）</td>
<td>1分当たりの動脈圧の脈動回数</td>
</tr>
<tr>
<td>1回拍出量（SV）</td>
<td>1回の拍動で駆出される血液の量</td>
</tr>
<tr>
<td>1回拍出量係数（SVI）</td>
<td>患者の体表面積で補正された1回拍出量</td>
</tr>
<tr>
<td>体血管抵抗（SVR）</td>
<td>各拍動で1回拍出量を駆出するために左室が克服しなければならない抵抗</td>
</tr>
<tr>
<td>体血管抵抗係数（SVRI）</td>
<td>患者の体表面積で補正された体血管抵抗</td>
</tr>
<tr>
<td>1回拍出量変化（SVV）</td>
<td>SVminとmaxの差とmeanの間の変化率</td>
</tr>
<tr>
<td>収縮期圧（SYS）</td>
<td>収縮期圧</td>
</tr>
</tbody>
</table>

※ボリュームビューカテーテルと併用した際は、キャリプレーションされた値になります。
ポリュームビュー：間欠的測定値

表1-2 ポリュームビュー間欠的パラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>心収縮機能指数（CFI）</td>
<td>心収縮機能指数は心肺熱稀釈法によって求められる、左室収縮機能の指標</td>
</tr>
<tr>
<td>間欠的な心拍出量（iCO）</td>
<td>熱稀釈法により間欠的に測定した心室から駆出される血液量（単位：リットル/分）</td>
</tr>
<tr>
<td>間欠的な心係数（iCI）</td>
<td>患者の体表面積で補正された間欠的な心拍出量</td>
</tr>
<tr>
<td>肺血管外水分量（EVLW）</td>
<td>肺組織内の血管外水分量</td>
</tr>
<tr>
<td>間欠的な肺血管外水分量係数（ELWI）</td>
<td>予想体重（PBW）に対する肺血管外水分量</td>
</tr>
<tr>
<td>全心駆出率（GEF）</td>
<td>GEDVを使用して推定された駆出率</td>
</tr>
<tr>
<td>全拡張終期容量（GEDV）</td>
<td>RAEDV、EVEDV、LAEDV、およびLVEDVの推定複合容量</td>
</tr>
<tr>
<td>全拡張終期容量係数（GEFI）</td>
<td>患者の体表面積で補正された全拡張終期容量</td>
</tr>
<tr>
<td>脈管内血液量（ITBV）</td>
<td>心臓および肺血液量（PBV）の推定複合量</td>
</tr>
<tr>
<td>肺血管透過性係数（PVPI）</td>
<td>推定肺血液量に対する肺血管外水分量の割合</td>
</tr>
<tr>
<td>間欠的1回拍出量（iSV）</td>
<td>間欠的熱希釈法により測定した1回の拍動で駆出される血液量</td>
</tr>
<tr>
<td>間欠的1回拍出量係数（iSVI）</td>
<td>患者の体表面積で補正された1回拍出量</td>
</tr>
<tr>
<td>間欠的体血管抵抗（iSVR）</td>
<td>間欠的熱希釈法により算出した各拍動で1回拍出量を駆出するために左室が克服しなければならない抵抗</td>
</tr>
<tr>
<td>間欠的体血管抵抗係数（iSVRI）</td>
<td>間欠的熱希釈法による体血管抵抗係数</td>
</tr>
</tbody>
</table>

肺血管外水分量 (EVLW)

肺血管外水分量係数 (ELWI)

全心駆出率 (GEF)

全拡張終期容量 (GEDV)

全拡張終期容量係数 (GEFI)

脈管内血液量 (ITBV)

肺血管透過性係数 (PVPI)

間欠的1回拍出量 (iSV)

間欠的1回拍出量係数 (iSVI)

間欠的体血管抵抗 (iSVR)

間欠的体血管抵抗係数 (iSVRI)

適応

EV1000 クリティカルケアモニターは、心機能、血液・体液状態、および血管抵抗間のバランスを連続または間欠的に評価する必要のある急性重症患者に対して使用されます。

EV1000 クリティカルケアモニターは、周術期の目標指向性療法プロトコルと組み合わせて血行動態パラメータのモニタリングに使用できます。血管内血液量および血管外体液量を算出するために、熱希釈線の平均通過時間とその形を解析します。Edwards製オキシメトリーカテーテルに接続すれば、モニターは成人と小児の酸素飽和度を測定します。EV1000 クリティカルケアモニターはあらゆるクリティカルケアの環境において使用することができます。

警告

EV1000 クリティカルケアモニターは患者のアセスメントの補助装置としてのみ使用するためのものです。本装置は生体情報モニターと併せて使用してください。

警告

EV1000 クリティカルケアモニターを使用する前に、本書をよくお読みください。

警告

EV1000 クリティカルケアモニターを適切に使用しないと、患者に危険が及ぼす可能性があります。本装置を使用する前に、本書の「警告」セクションをよくお読みください。

警告

EV1000 クリティカルケアモニターの使用は、1度につき1人の患者に制限されています。

オキシメトリー

表1-3 オキシメトリーパラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>中心静脈血酸素飽和度 (ScvO2)</td>
<td>上大静脈で測定した静脈血酸素飽和度</td>
</tr>
<tr>
<td>混合静脈血酸素飽和度 (SvO2)</td>
<td>肺動脈で測定した静脈血酸素飽和度</td>
</tr>
<tr>
<td>酸素消費量 (VO2)</td>
<td>身体が1分当たり使用する酸素量</td>
</tr>
<tr>
<td>酸素消費量係数 (VO2e)</td>
<td>身体が1分当たり使用する酸素量の推定値</td>
</tr>
<tr>
<td>酸素消費量係数 (VO2I)</td>
<td>患者の体表面積で補正された酸素消費量</td>
</tr>
<tr>
<td>酸素消費量係数 (VO2Ie)</td>
<td>患者の体表面積で補正された推定酸素消費量</td>
</tr>
</tbody>
</table>
フロートラック動脈圧心拍出量 (APCO)

EV1000 クリティカルケアモニターをフロートラックセンサーと同時に使用した場合、患者的動脈圧波形を用いて心拍出量を連続測定します。患者の身長、体重、年齢、性別を入力することにより、患者特有の血管コンプライアンスが決定されます。フロートラックアルゴリズムの「血管緊張自動調整」は血管抵抗およびコンプライアンスの変化を認識し、それらに対して自動調整を行います。心拍出量は脈拍数に圧波形から算出された1回拍出量をかけることにより算出され、連続表示されます。フロートラックセンサーは1回拍出量に比例する動脈圧の変動を測定します。

EV1000 クリティカルケアモニターをフロートラックセンサーと同時に使用した場合、患者の動脈圧波形を用いて1回拍出量変化(SVV)を連続測定することもできます。換気回数と1回換気量が一定の人工呼吸器下にあり、自発呼吸がない場合、SVVは患者的輸液反応性の感度の高い指標となります。SVVは通常1回拍出量または心拍出量の評価と併せて使用されます。

ボリュームビュー心拍出量 (VV-CO)

ボリュームビュー心拍出量は、EV1000クリティカルケアモニターをフロートラックセンサーおよびボリュームビュークテーテルと同時に使用した場合、患者の動脈圧波形およびTPTDにより求められた心拍出量を用いて、キャリプレーションされた心拍出量を連続表示します。ボリュームビュー CO(ボリュームビューパラメータ測定時にフロートラックセンサーによって測定される心拍出量)アルゴリズムは心拍出量キャリプレーション(TPTD)および生理的変数の連続的評価に基づいています。

オキシメトリー

EV1000 システムは分光光度法を用いて酸素飽和度を測定し%表示します。血管内に挿入したカテーテル内の光ファイバーを通じて、発光ダイオード(LED)から赤色光および赤外線が送られます。この光は血液で反射し、カテーテル内の他の光ファイバーを通ってオプティカル・モジュールに入ります。通常、ヘモグロビンに結合する酸素量や、存在する赤血球の数によって色が異なるため、反射光の量は一定ではありません。反射光はEV1000システムによって測定されてから分析され、赤血球の色の変化を検知することで酸素飽和度が決定されます。カテーテルの先端にある光ファイバーがどの位置にあるかによって、モニターに表示されるオキシメトリーパラメータが決まります。最も一般的なのは、上大静脈(SVC)で測定される中心静脈酸素飽和度(ScvO2)と、肺動脈で測定される混合静脈酸素飽和度(SvO2)です。
EV1000 クリティカルケアモニターの取扱説明書

EV1000 の取扱説明書は、救命治療を行うあらゆる環境でクリティカルケア臨床医が EV1000 クリティカルケアモニターを使用するために作成されています。本書ではデバイスのセットアップや操作方法について説明します。またユーザー設定についての説明、EV1000 クリティカルケアモニターを設置できる操作環境についても説明します。この中にはその環境内での外部デバイスやモニターとの接続方法および通信方法も含まれます。

添付 A を参照してください。

頭字語および略語

本書では以下の頭字語および略語が使用されています。

<table>
<thead>
<tr>
<th>略語</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D</td>
<td>アナログ／デジタル</td>
</tr>
<tr>
<td>APCO</td>
<td>動脈圧心拍出量</td>
</tr>
<tr>
<td>BP</td>
<td>動脈圧</td>
</tr>
<tr>
<td>BSA</td>
<td>体表面積</td>
</tr>
<tr>
<td>BT</td>
<td>血液温度</td>
</tr>
<tr>
<td>CFI</td>
<td>心収縮機能指数</td>
</tr>
<tr>
<td>CI</td>
<td>心係数</td>
</tr>
<tr>
<td>CO</td>
<td>心拍出量</td>
</tr>
<tr>
<td>CPO</td>
<td>心拍出力</td>
</tr>
<tr>
<td>CPI</td>
<td>心拍出力係数</td>
</tr>
<tr>
<td>CVC</td>
<td>中心静脈カテーテル</td>
</tr>
<tr>
<td>CVP</td>
<td>中心静脈圧</td>
</tr>
<tr>
<td>DIA</td>
<td>拡張期圧</td>
</tr>
<tr>
<td>DO₁</td>
<td>酸素運輸量</td>
</tr>
<tr>
<td>DO₂</td>
<td>酸素運輸係数</td>
</tr>
<tr>
<td>DPT</td>
<td>ディスポザブル圧トランスデューサ</td>
</tr>
<tr>
<td>ELS</td>
<td>肺血管外水分量係数</td>
</tr>
<tr>
<td>EVLW</td>
<td>肺血管外水分量</td>
</tr>
<tr>
<td>GDT</td>
<td>目標指向容積法</td>
</tr>
<tr>
<td>GEDI</td>
<td>全拡張終期容積係数</td>
</tr>
<tr>
<td>GEDV</td>
<td>全拡張終期容積</td>
</tr>
<tr>
<td>GEF</td>
<td>全心駆動</td>
</tr>
<tr>
<td>Hct</td>
<td>ヘマトクリット</td>
</tr>
<tr>
<td>HGB</td>
<td>ヘモグロビン</td>
</tr>
<tr>
<td>HIS</td>
<td>病院情報システム</td>
</tr>
<tr>
<td>iCO</td>
<td>間欠的心拍出量</td>
</tr>
<tr>
<td>iSV</td>
<td>間欠的1回拍出量</td>
</tr>
</tbody>
</table>

EV1000 イーサネットケーブルは EV1000 イーサネットケーブルを指す。

タッチ モニター画面にタッチすることによって EV1000 システムを使用すること。

データボックス EV1000 モニターに接続するデバイスで、センサー信号を測定し、データを計算し、EV1000 モニターに表示する。EV1000 データボックス。

モニター EV1000 モニターを指す。
第2章: 安全と記号

本章では、警告、禁忌・禁止、注意、注記などの表示を含む、本書または製品ラベル内に記載されている記号について説明します。本章の後半には、本書で使用されているすべての警告・注意の一覧があります。

本章には、EV1000 クリティカルケアモニターが準拠している関連規格の一覧も記載されています。

安全に関する識別記号

「警告」、「注意」および「注記」という言葉は、記号で示され、本書で使用される場合には特定の意味を持ちます。

警告
人体への危害または死に至るような所定の動作もしくは状況を知らせるものです。

注意
機器の故障、不正確なデータの生成、操作の無効化を引き起こすような動作もしくは状況を知らせるものです。

注記
これは注記です。機能または手順に関する有用な情報への注意を促します。

警告
以下の警告は本書で使用されているものです。これらの記号は機能や手順に関する説明の際に本書で使われます。

警告
EV1000 クリティカルケアモニターは患者のアセスメントの補助装置として使用するためのものです。本装置は生体情報モニターと併せて使用してください。
（第1章）

警告
EV1000 クリティカルケアモニターを使用する前に、本書をよくお読みください。
（第1章）

警告
EV1000 クリティカルケアモニターの電磁放射の増加や電磁イミュニティの低下を招くことがあります。
（第3章）

警告
推奨されるセットアップ手順（第7〜8章）および所定のメンテナンス手順（付録E）に従っている場合、本装置は電気的外科装置の使用下で使用することができます。電気メスまたは電気的外科装置による干渉などの要因により、パラメータの測定値が不正確になる場合があります。
（第3章）

警告
データボックスまたはモニターポートにIEC60601-1未認可の外部機器を取り付けないでください。
（第3章）

警告
イーサネットケーブルにはデータボックス以外のものを接続しないでください。
（第3章）
警告
プリンターをはじめとするすべての IEC/EN 60950 機器は、患者のベッドから 1.5 メートル以上離して設置してください。
(第 3 章)

警告
怪我や機器の損傷を避けるため、EV1000 モニターと EV1000 データボックスをしっかりと置き、ユーザーや患者に絡むことのないように、すべてのコードやケーブルを束ねてください。
(第 3 章)

警告
データボックスが中脛窩線と同じ高さに取り付けられているか確認してください。
(第 3 章)

警告
アラームランプおよびアラーム音は、画面上でパラメータがキーパラメータとして選択され表示されている場合にしか作動しません。パラメータがキーパラメータとして選択されていない場合、アラーム音は消音されます。
(第 4、6、7、10 章)

警告
新たな患者に対して EV1000 システムを接続する際には、「新規患者」を実行するか、患者データプロファイルを消去してください。これを行わないと、履歴表示に前患者のデータが表示されることがあります。
(第 6 章)

警告
患者の安全性に問題を引き起こす可能性がある場合は、アラーム音をオフにしてください。
(第 6 章)

警告
アラームの音量が、アラームとして十分に機能するレベルに設定されていることを確認してください。適切な音量で設定されていない場合、患者の安全性上、問題を引き起こす可能性があります。
(第 6 章)

警告
新しい患者に対して EV1000 システムを接続する際には、「新規患者」を実行するか、患者データプロファイルを消去してください。これを行わないと、履歴表示に前患者のデータが表示されることがあります。
(第 4、6、7、10 章)

警告
感電または発火の危険があります！ EV1000 モニター、データボックス、ケーブルを液体の中に浸さないでください。また、液体が装置内部に入らないようにしてください。
(付録 E)

警告
損傷したケーブルを使用すると、心拍出量測定値が不正確になる、または EV1000 クリティカルケアモニターが損傷することがあります。
(付録 E)

警告
指定以外のアクセサリー、センサー、ケーブルを使用すると、EV1000 クリティカルケアモニターの電磁放射の増加や電磁イミュニティの低下を招くことがあります。
(付録 F)

警告
EV1000 モニターおよび EV1000 データボックスを他の機器に横付けたり、積み重ねてください。横付けや積み重ねが必要な場合は、使用中に、正常な動作をしているか EV1000 モニターおよび EV1000 データボックスを監視してください。
(付録 F)

警告
EV1000 モニターおよび EV1000 データボックスを他の機器に横付けたり、積み重ねてください。横付けや積み重ねが必要な場合は、使用中に、正常な動作をしているか EV1000 モニターおよび EV1000 データボックスを監視してください。
(付録 F)
警告

EV1000 クリティカルケアモニターによる生理的信号の計測には最小振幅があります。最小振幅より低い振幅で機器の操作を行うと誤った結果が生じることがあります。

注意

以下の注意は、本書で使用されているものです。これらの記号は、機能や手順に関する説明の際に本書で使われます。

注意

MRIを実施している間は、EV1000 クリティカルケアモニターを使用しないでください。カテーテルのMRI適合性についてはカテーテルの添付文書をご参照ください。

注意

EV1000 クリティカルケアモニターを極度な温度にさらさないようにしてください。

注意

EV1000 クリティカルケアモニターへの損傷を避けるために、適切な保护を講じてください。

注意

APCO APAPの測定の有効性は検証されていません。

注意

以下の要因によりAPCOの測定が正しく行われない場合があります。

1. 不適切なゼロ点調整およびセンサー/通すデバイスの高さ調整
2. オーバーダンピング、またはアンダーダンピングになっている。
3. 血圧に過剰な変化がある。血圧が変化する例としては以下のものがありますが、これに限られるわけではありません。
 - 大動脈内バルーンポンプ
 - 動脈圧が不正確だと思われるような臨床状態
 - 大動脈の圧を反映していないと思われる臨床状態。例としては以下のものがありますが、これらに限られるわけではありません。
 - 椎骨動脈圧波形に著しい影響を及ぼす著しい末梢血管収縮
 - 肝移植の術後に見られることがあるハイパーキンウミフィング（著しい高心拍出量）状態
 - 患者の過度な運動

注意

強い光によって液晶画面が見にくい状況ではEV1000 モニターを使用しないでください。

注意

本モニターを手持ち機器として使用しないでください。

注意

システムの電源供給を断つには、必ずコンセントから電源コードを抜いてください。

SVVフィルタリング超過インジケータ（黄色いハート）は、フィジオビュー画面のSVV スロープインジケータ上の値には表示されません。

注意

ケーブルの抜き差しを行う場合は、ケーブルではなくコネクター部を持ってください。

注意

ノコンネクターを捻ったり、折ったりしないでください。
注意
以下の要因によりTPTDまたはボリュームビューCO測定が正しく行われない場合があります:
• 不適切なゼロ点調整およびセンサー/トランスデューサの高さ調整
• オーバーダンピング、またはアンダーダンピングになっている。
• 動脈圧が不正確だと思われるような臨床状態や、大動脈圧を反映していないと思われる臨床状態。
• 患者の過度な運動
• 電気メスまたは電気的外科装置による干渉
• 大動脈圧の測定の位置または位置が正しくない
• 血液温度変化の過剰な変化または干渉。血液温度変化が生じる主な原因としては以下のものがありますが、これらに限られるわけではありません:
 * 心肺バイパス術後の状態
 * 中心からの低温または高湿の血液製剤などの注入
 * サーミスタの血栓形成
 * ボリューム・ビューカテーテルのサーミスターに外部の加温／冷却機器（加温ブランケット、冷却ブランケット）が接触している
 * 電気メスや電気的外科装置による干渉
 * 心拍出量の急激な変化
 * 大動脈内バルーンポンプ
 * 解剖学上の異常（心臓内シャントなど）

注意
小児患者におけるTPTDおよびボリュームビューCO測定の有効性は検証されていません。

注意
電気的外科装置の使用がSOIシグナルに影響することがあります。可能なであれば電気的外科装置とケーブルをEV1000クリティカルケアモニターから離し、電源コードを別のACコンセントに差し込んでください。それでもシグナルの再帰的な問題が解決しない場合、最寄りのエドワーズライフサイエンス株式会社へご連絡ください。

注意
オキシメトリーの正確な体外キャリブレーションを行うため、カテーテルとキャリブレーションカッコは必ず使っている状態で行ってください。
カテーテルルーメンのフラッシュは、体外キャリブレーションの完了後に行ってください。

注意
オキシメトリー・モジュールを蒸気滅菌、放射線滅菌、またはEO滅菌しないでください。また、液体に浸さないでください。

注意
ケーブルコネクターがプラットフォームに接続されており、プラットフォームの電源がオンになっている時に、ケーブルを引きつつ巻かないでください。収納時にケーブルをきつく巻かないでください。

注意
すべてのケーブルを定期的に検査し、欠陥がないか確認してください。収納時にケーブルをきつく巻かないでください。

注意
外部CVP接続をする際、トランスデューサに対してAC印加電圧を使用しないでください。
EV1000はDC印加電圧のみ使用するように設計されています。

注意
外部CVP接続をする際、トランスデューサに対してAC印加電圧を使用しないでください。

注意
背前面パネルを清掃しないでください。

注意
禁止事項:
・ 液体が電源コネクターと接触すること
・ 液体がコネクターまたはケースの開口部に入ること
・ プラットフォームの背面パネルを清掃すること

注意
オプティカル・モジュールを蒸気滅菌、放射線滅菌、またはEO滅菌しないでください。また、液体に浸さないでください。

注意
ケーブルコネクターがプラットフォームに接続されており、プラットフォームの電源がオンになっている時に、ケーブルを引きつつ巻かないでください。収納時にケーブルをきつく巻かないでください。
注意
ケーブルコネクターを洗剤、イソプロピルアルコール、グルタルアルデヒドに浸さないでください。（付録 E）

注意
ケーブルコネクターを乾燥するために、ドライヤーを使用しないでください。（付録 E）

注意
携帯形および移動形 RF 通信装置は EV1000 を含むすべての医療電気機器に影響する可能性があります。通信装置と EV1000 間の適切な分離距離に関するガイダンスは付録の表 F-3 にあります。
モニター画面上の記号

<table>
<thead>
<tr>
<th>記号</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>⌁</td>
<td>アラームサイレント</td>
</tr>
<tr>
<td>⌂</td>
<td>モニタリング時停止解除ボタン</td>
</tr>
<tr>
<td>⌃</td>
<td>パラメータのアラーム音が無効になっていることを示す記号</td>
</tr>
<tr>
<td>⌄</td>
<td>パラメータのアラーム音が有効になっていることを示す記号</td>
</tr>
<tr>
<td>▶️</td>
<td>垂直スクロールボタン</td>
</tr>
<tr>
<td>◀️</td>
<td>水平スクロールボタン</td>
</tr>
<tr>
<td>🔊</td>
<td>決定ボタン</td>
</tr>
<tr>
<td>🎈</td>
<td>決定キー（キーパッド用）</td>
</tr>
<tr>
<td>⏯️</td>
<td>バックスペースキー（キーパッド用）</td>
</tr>
<tr>
<td>⏮️</td>
<td>カーソルを1文字だけ左に移動</td>
</tr>
<tr>
<td>⏙️</td>
<td>カーソルを1文字だけ右に移動</td>
</tr>
<tr>
<td>⏳️</td>
<td>取消キー（キーパッド用）</td>
</tr>
<tr>
<td>🟢</td>
<td>有効項目</td>
</tr>
<tr>
<td>🟠</td>
<td>無効項目</td>
</tr>
<tr>
<td>📦</td>
<td>モニター画面選択ボタン</td>
</tr>
<tr>
<td>🌋</td>
<td>目標指向療法ボタン</td>
</tr>
<tr>
<td>😎</td>
<td>アクションボタン</td>
</tr>
<tr>
<td>🦵</td>
<td>ナビゲーションバー、アクションメニューのゼロ点調整および波形アイコン</td>
</tr>
<tr>
<td>🕶️</td>
<td>アクションメニューのオキシメトリーキャリプレーションアイコン</td>
</tr>
<tr>
<td>📊</td>
<td>アクションの中の熱帯気測定メニューオプション</td>
</tr>
<tr>
<td>🌐</td>
<td>算出パラメータ計算ボタン</td>
</tr>
</tbody>
</table>

表 2-1 モニター画面上の記号

<table>
<thead>
<tr>
<th>記号</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>📎</td>
<td>アクションの追加アクションアイコン。表示される追加オプションには算出パラメータ計算およびイベントレビューが含まれます。</td>
</tr>
<tr>
<td>🕮</td>
<td>イベントレビューボタン</td>
</tr>
<tr>
<td>🎮</td>
<td>アクションメニューの CVP 入力ボタン</td>
</tr>
<tr>
<td>🔓</td>
<td>設定ボタン</td>
</tr>
<tr>
<td>🎄</td>
<td>スクリーンキャプチャーボタン</td>
</tr>
<tr>
<td>🔌</td>
<td>メインモニター画面へ戻る</td>
</tr>
<tr>
<td>☒</td>
<td>前のメニューへ戻る</td>
</tr>
<tr>
<td>🚫</td>
<td>取消</td>
</tr>
<tr>
<td>🕍</td>
<td>情報バー上の HIS 使用可能アイコン</td>
</tr>
<tr>
<td>👁️</td>
<td>クロック/波形アイコン:履歴データを見るため。間欠的インジケータとも呼ばれます。</td>
</tr>
<tr>
<td>🌊</td>
<td>グラフトレンド画面上の動脈圧波形表示ボタン</td>
</tr>
<tr>
<td>🗝️</td>
<td>グラフトレンド画面上の動脈圧波形非表示ボタン</td>
</tr>
<tr>
<td>🕑</td>
<td>ボーラスクロック</td>
</tr>
<tr>
<td>🕒</td>
<td>インターベンション分析ボタン</td>
</tr>
<tr>
<td>🔁️</td>
<td>インターベンション分析:カスタム時のインジケータ（グレー）</td>
</tr>
<tr>
<td>🔁️</td>
<td>インターベンション分析:体位チャレンジ時のインジケータ（紫）</td>
</tr>
<tr>
<td>🔁️</td>
<td>インターベンション分析:輸液負荷のインジケータ（青）</td>
</tr>
<tr>
<td>🔁️</td>
<td>インターベンション分析:インターベンションのインジケータ（緑）</td>
</tr>
<tr>
<td>📜</td>
<td>インターベンション情報バルーン上の編集ボタン</td>
</tr>
<tr>
<td>⌁</td>
<td>GDT トレッキング画面上のターゲット追加ボタン</td>
</tr>
</tbody>
</table>
本体の記号

本節ではデータボックスおよびモニターに記載されているすべての記号について説明します。

<table>
<thead>
<tr>
<th>記号</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDT トラッキング画面上のターゲット値ボタン</td>
<td></td>
</tr>
<tr>
<td>GDT トラッキング画面上のターゲットボタン</td>
<td></td>
</tr>
<tr>
<td>GDT トラッキング画面上のターゲット編集ボタン</td>
<td></td>
</tr>
<tr>
<td>GDT トラッキング画面上の Time In Target (ターゲット範囲内時間) シンボル</td>
<td></td>
</tr>
<tr>
<td>ターゲットステータス／アラームインジケータ：緑：ターゲット範囲内 黄：ターゲット範囲外 赤：レッドアラームまたはターゲット範囲内 グレー：ターゲット未決定 青：GDT ターゲット範囲内 黒：GDT ターゲット範囲外</td>
<td></td>
</tr>
<tr>
<td>クリニカルインジケータ（ランタン）：SVV スロープ</td>
<td></td>
</tr>
</tbody>
</table>

注意: 添付の文書をお読みください。

CF 形装着部

変形細動形の CF 形装着部

コネクターの種類：フロートラックケーブルコネクター

製造会社

IPX1 規格に準拠し、真上から水がかかった場合に耐水性があります。

EC 指令 2002/96/EC に従い、廃電気電子機器の分別を示すマーク。

コネクター：USB ポート

直流電流のみ。

装置ネットワークインジケータまたは装置ネットワーク接続。

装置の一部が“ON”状態になっていることを示します。

デバイスを初期状態に戻すコントロールを識別しています。

取扱説明書をお読みください。

取扱説明書をお読みになり、使用方法を確認してください。

ETL 認証

ビデオ出力用

コネクター：シリアル COM 出力
梱包箱に記載されている記号

以下の記号は、出荷時の段ボールに記載されており、運搬時および保管時における EV1000 システムの取扱い上の環境条件を示しています。

<table>
<thead>
<tr>
<th>記号</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌿</td>
<td>内容物を濡らさないこと。</td>
</tr>
<tr>
<td>🍺</td>
<td>ワレモノ。取り扱い注意。</td>
</tr>
<tr>
<td>🌟</td>
<td>天地無用</td>
</tr>
<tr>
<td>🌡️</td>
<td>内容物を相対温度 95％以上、または 10％以下の環境にさらさないこと。</td>
</tr>
<tr>
<td>☀️</td>
<td>内容物を温度 70℃以上、または -25℃以下の環境にさらさないこと。</td>
</tr>
<tr>
<td>🌞</td>
<td>直射日光に当てないこと。</td>
</tr>
</tbody>
</table>

表 2-3 梱包箱に記載されている記号

<table>
<thead>
<tr>
<th>品番</th>
<th>数量</th>
<th>非滅菌</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>使用期限</th>
<th>ロット番号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>損傷時の使用禁止</th>
<th>欧州共同体の認可</th>
</tr>
</thead>
</table>

表 2-4 準拠規格

<table>
<thead>
<tr>
<th>規格</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC60601-1: 2005 (3rd ed)</td>
<td>医用電気機器-第一部：基礎安全及び基本性能に関する一般的要項 Correction AC: 2010</td>
</tr>
<tr>
<td>IEC 60601-1-6: 2010</td>
<td>医用電気機器-第 1-6 部：基礎安全及び基本性能に関する一般的要求事項-副通則：ユーザビリティ</td>
</tr>
<tr>
<td>IEC 62366: 2007</td>
<td>医療機器－医療機器へのユーザビリティエンジニアリングの適用</td>
</tr>
<tr>
<td>IEC 60601-1-8: 2006</td>
<td>医用電気機器－第 1-8 部：基礎安全及び基本性能に関する一般的要求事項-副通則：医療電気機器及び医療電気システムの警告システムの一般要求事項、試験及び指針</td>
</tr>
<tr>
<td>IEC 60601-2-34: 2011</td>
<td>医用電気機器－第 2-34 部：観血式血圧監視器の安全と基本性能に関する個別要求事項</td>
</tr>
<tr>
<td>IEC 60601-2-49: 2011</td>
<td>医用電子機器－第 2-49 部：多機能患者監視機器の基本安全及び基本性能に関する特定要求事項</td>
</tr>
<tr>
<td>IEC 60601-1-2: 2007</td>
<td>医用電気機器－第 1-2 部：基礎安全及び基本性能に関する一般的要求事項-副通則：電磁両立性－要求事項および試験</td>
</tr>
<tr>
<td>IEC 60968-2-6: 1995</td>
<td>正弦振動</td>
</tr>
<tr>
<td>IEC 60968-2-13</td>
<td>高地での操作及び保管に関する要求事項</td>
</tr>
<tr>
<td>IEC 60968-2-27</td>
<td>機械的衝撃</td>
</tr>
<tr>
<td>IEC 60608-2-32-1975</td>
<td>落下試験</td>
</tr>
<tr>
<td>IEC 60968-2-64: 1995</td>
<td>不規則振動</td>
</tr>
<tr>
<td>ISO 14971:2007</td>
<td>医療機器－医療機器へのリスクマネジメントの適用</td>
</tr>
<tr>
<td>ISO 15223-1:2012</td>
<td>医療機器－医療機器のラベル、ラベリング及び提供する情報に用いる記号－第 1 部：一般要求事項</td>
</tr>
</tbody>
</table>
第3章：開梱および初期設定

本章では EV1000 クリティカルケアモニターの開梱および初期設定について説明します。パラメター設定およびユーザーアプリケーションによっては、アクセサリーが必要になります。

図 3-1 は参考情報にすぎず、モニターおよびモニターの型により包装形態および設定が異なる場合があります。

図 3-1 EV1000 パッケージの中身
開梱

輸送中に損傷した形跡がないかどうか、梱包箱を確認してください。万が一、何らかの破損を確認した場合は、梱包箱の写真を撮影した上で、エドワーズライフサイエンス株式会社に連絡してください。

内容物

EV1000 クリティカルケアモニターは 1 つの箱に入れて出荷されます。消耗品とアクセサリーは別々に供給されることもあります。注文内容がすべて揃っていることをご確認ください。

モニター用アクセサリー

以下のアクセサリーは特定のパラメータをモニタリングおよび算出するために必要です：

<table>
<thead>
<tr>
<th>Edwards 製心拍出量センサー</th>
<th>必要な消耗品</th>
<th>技術</th>
<th>得られるパラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>フロートラック動脈圧心拍出量（APCO）</td>
<td>フロートラックセンサー 動脈カテーテル</td>
<td>自動キャリブレーション心拍出量</td>
<td>CO CI SV SVI SVV SVR SVRI SYS DIAM AP CO</td>
</tr>
<tr>
<td>経肺熱希釈心拍出量（TPTD）</td>
<td>ボリュームビューカテーテル中心静脉カテーテル CVC マニフォールド Edwards 製トランスデューサ（CVP 用トランスデューサ） 冷水注入液用シリンジ</td>
<td>TPTD CO</td>
<td>CO iCI iSV iSVI iSVR iSVRI GEDV GEDI GEF CPO EVLW PVPI ITBV</td>
</tr>
<tr>
<td>ボリュームビュー心拍出量（VV-CO）</td>
<td></td>
<td>手動キャリブレーション心拍出量</td>
<td>CO CI SV SVI SVV SVR SVRI SYS DIAM AP CO</td>
</tr>
</tbody>
</table>

* 連続 SVR 測定には CVP が必要です。APCO には必要ありません。
表3-2 モニタリング用アクセサリー - 静脈血酸素飽和度

<table>
<thead>
<tr>
<th>Edwards製オキシメトリーカテーテル</th>
<th>必要な消耗品</th>
<th>技術</th>
<th>得られるパラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>中心静脈血酸素飽和度</td>
<td>プリセップカテーテル</td>
<td>分光光度法</td>
<td>ScvO₂</td>
</tr>
<tr>
<td></td>
<td>ペディアサットカテーテル</td>
<td></td>
<td></td>
</tr>
<tr>
<td>混合静脈血酸素飽和度</td>
<td>スワンガンツカテーテル</td>
<td>分光光度法</td>
<td>SvO₂</td>
</tr>
</tbody>
</table>
モニターの設置

環境条件については付録A「仕様」を参照してく
ださい。

警告
爆発の危険があります！空気、酸素または亜酸
化窒素と可燃性爆発性の混合ガスが存在する場所
でEV1000クリティカルケアモニターを使用し
ないでください。

警告
付属の電源コード以外の電源コードをデータ
ボックスまたはモニターに使用しないでくださ
い。

警告
トランスデューサに対する印加電圧がAC または
は不安定なDCであるような電磁放射を伴
うモニターをEV1000データボックスに接続し
ないでください。EV1000データボックスに接続していると
ときは電磁放射を伴うモニターを接続しないでくだ
ばなりません。

警告
EV1000モニターには1台のデータボックスのみ
接続してください。接続にはEdwardsが提供す
るイーサネットケーブルのみを使用してください。

警告
電源をつなぐ際は、延長コードやマルチタップ
を使用しないでください。付属の電源コード以
外の取り外し可能な電源コードを使用しないでく
ださい。

警告
損傷のあるシステムコンポーネントを使用しな
いでください。

警告
対象以外のアクセサリー、センサー、ケーブル
を使用すると、EV1000クリティカルケアモニ
ターの電磁放射の増加や電磁イミュニティの低
下を招くことがあります。

警告
推奨されるセットアップ手順（第7～8章）お
よび付属のメンテナンス手順（付録E）に従っ
ている場合、本装置は電気的外科装置の使用下
で使用することができます。電気メスまたは電
気的外科装置による干渉などの要因により、パ
ラメータの測定値が不正確になる場合がありま
す。

警告
データボックスまたはモニターポートに
IEC60601-1未認可の外設機器を取り付けないでく
ださい。

警告
イーサネットケーブルにはデータボックスやモ
ニター以外のものを接続しないでください。

警告
プリンターをはじめとするすべてのIEC/EN
60950機器は、患者のベッドから1.5メートル以
上離して設置してくださいます。

警告
MRIを実施している間は、EV1000クリティカル
ケアモニターを使用しないでください。カテーテルの
MRI適合性についてはカテーテルの添付文書を参照してください。

警告
EV1000クリティカルケアモニターを極度な温
度にさらさないようにしてください。

警告
EV1000クリティカルケアモニターの換気口を
塞がないでください。

警告
EV1000クリティカルケアモニターへの損傷を防
ぎ、正しい患者データを得るために、Edwards
製品と互換性のあるアクセサリーのみを使用し
てください。

警告
EV1000クリティカルケアモニターを外部デバ
イスに接続する場合、詳しく取り扱い方法につい
ては外部デバイスの購入文書（取扱説明書）を
参照してください。臨床で使用する前に、シス
テムの正しい操作方法を確認してください。

警告
無理に液晶画面を見えにくい状況では
EV1000モニターを使用しないでください。

取り付けに関する推奨事項

院内の手順に従ってモニターおよびデータボッ
クスをIVポールまたは同等のものにしっかりと
取り付けてください。EV1000システム付属のク
ランプは19〜39mmのポールに適合します。取付
けカート、ラック、またはその他のオプションに
ついての推奨は、最寄りのエドワーズライフサイ
エンス株式会社へお問い合わせください。

警告
怪我や機器の損傷を避けるため、EV1000モニ
ターとEV1000データボックスをしっかりと設
置し、ユーザーおよび患者に絡むことがないように、
すべてのコードやケーブルを束ねてください。

警告
データボックスが床面から通常上向きに取り付
けられているか確認してください。

警告
IPX1耐水を確保するため、モニターと電源アダ
プターは垂直に設置してください。

警告
怪我や損傷を防ぐため、本装置をしっかりと取
り付けてください。適切なマウントサイズについ
ての推奨事項を参照してください。

警告
本モニターを手持ち機器として使用しないでく
ださい。

モニターの接続

1 もっともデータボックスがしっかりと取り
付けられたら、システム付属の電源アダプ
データボックスからのモニターへのイーサネット接続
2. 電源アダプターを同梱の電源アダプターケーブルに取り付けます。
3. イーサネットケーブルでデータボックスとモニター間を接続します。
4. AC 電源プラグを病院用コンセントに差し込みます。

データボックスにはランプが 2 つあります：1 つは AC 電源供給を示し、1 つはイーサネット通信状態を示します。ランプが点滅した場合、第 14 章「ヘルプとトラブルシューティング」の 2 ページ「データボックス通信および電源」を参照してください。

物理的および電気的要件、また温度および大気環境については付録 A「仕様」を参照してください。

ケーブルの接続

カテーテルの留置、使用方法、およびそれらに関連した警告、注意、および注記については、各カテーテルについての添付文書を参照してください。

注意
除細動器の放電に対する保護は患者ケーブルを正しく使用することに依存しています。

図 3-2 EV1000 のケーブル接続

① データボックスからモニターへのイーサネット接続
② モニター電源
③ データボックス電源
④ オプティカル・モジュールの接続
⑤ ボリュームビュー・ケーブルおよび注入液温度プローブ
⑥ フロートラック／ボリュームビュー／CVP ケーブル
⑦ USB ポート

* EV1000 クリティカルケアモニターは、100 ～ 240VAC の電源電圧用に自動的に調節されます。

注意
システムの電源供給を断つには、必ずコンセントから電源コードを抜いてください。

物理的および電気的要件、また温度および大気環境については付録 A「仕様」を参照してください。

ケーブルの接続

カテーテルの留置、使用方法、並びにそれらに関連した警告、注意、および注記については、各カテーテルについての添付文書を参照してください。

注意
除細動器の放電に対する保護は患者ケーブルを正しく使用することに依存しています。

図 3-2 に示すケーブル接続の位置およびモニターの外観は例にすぎず、実際のケーブル接続位置および外観はモニターのモデルにより異なる場合があります。15-2 ページの「EV1000 モニターの種類」を参照してください。

① データボックスからモニターへのイーサネット接続
② モニター電源
③ データボックス電源
④ オプティカル・モジュールの接続
⑤ ボリュームビュー・ケーブルおよび注入液温度プローブ
⑥ フロートラック／ボリュームビュー／CVP ケーブル
⑦ USB ポート

* EV1000 取説 (EWL160-01) 本文.indd 5 2018/05/01 9:50:38
初回起動

EV1000 クリティカルケアモニターの電源を初めて入れる際、言語オプションの選択を行います。これは表示言語、時刻と日付フォーマット、測定単位に反映されます。

システムの電源を入れると、Edwards の画面に続いて電源オン・セルフテスト (POST) が始まります。POST は毎回モニターの電源を入れるたびに実施され、主要なハードウェアコンポーネントの機能を実行することで、装置が基本的な作動要件を満たしていることを確認します。POST のステータスメッセージは起動画面上に、シリアル番号やソフトウェアのバージョンナンバーといったシステム情報とともに表示されます。

1 電源ボタンを押してモニターの電源をオンにします。

* 電源ボタンはモニターの正面または裏側にあります。Ex.2 ページの「EV1000 モニターの種類」を参照してください。

2 電源コードをコンセントに差し込んでデータボックスおよびモニターの電源をオンにします。下のランプ（イーサネットステータス）が緑色に点滅するまでお待ちください。

モニターおよびデータボックスをオフにするには：
1 モニターがオフになるまで電源ボタンを長押しします。
2 データボックスの電源をオフにするには、データボックスの電源コードをコンセントから抜きます。

* 注記：診断テストでエラーが検知された場合、起動画面はシステムエラー画面に切り替わります。第 14 章「ヘルプとトラブルシューティング」または付録 E 「システムのメンテナンス、点検およびサポート」を参照してください。解決しない場合はエドワーズライフサイエンス株式会社にご連絡ください。

図 3-3 起動画面

言語の選択

言語選択画面はソフトウェアの初期化およびセルフテストが終了すると表示されます。言語を選択すると、表示単位や時刻と日付のフォーマットもその言語のデフォルト設定に設定されます（付録 C 「モニター設定とデフォルト設定」を参照してください）。

言語選択に関連する各設定は、別途、モニター設定画面の時刻／日付画面や、モニター基本設定画面の言語オプションで変更することができます。

図 3-4 言語選択画面

言語を選択すると新規患者画面が現れ、新規患者情報を入力してモニタリングを開始することができます。

* 図 3-3 および3-4 は起動画面および言語選択画面の例です。
第4章：EV1000 クイックスタートガイド

本章は熟練した臨床医師を対象としています。EV1000を使用したモニタリングについて簡潔に説明します。詳しい情報については、本書のそれぞれの章を参照してください。

1 スイッチを使用してEV1000の電源をオンにします。
2 すべての機能はタッチパネルからアクセスします。

フロートラックシステムと圧モニタリング

1 プライミング後、フロートラックセンサーをデータボックスに接続します。
2 連続SVR/SVRIモニタリングを行う場合、プライミングしたフロートラック圧ラインを橈骨または大腿動脈カテーテルに、またプライミングした中心静脈圧ラインを中心静脈カテーテルに接続します。

図4-1 APCOフロートラック接続

①フロートラックセンサー ④ EV1000モニター
②圧トランスデューサ ⑤ 生体情報モニター
③ EV1000データボックス ⑥ 中心静脈カテーテル

3 患者情報は設定ボタンにタッチすることによって入力することができます。

図4-2 パラメータ設定

4 患者データを選択後、各フィールドにタッチして患者データを入力または選択します。

図4-3 患者データの入力画面

5 Homeボタンにタッチします。

6 モニター画面選択ボタンにタッチし、表示する画面の種類にタッチします（画面の説明については第5章にある「モニタリングビュー」を参照してください）。
7. 決定ボタンを選択します。

8. アラームとターゲットを変更するには、グローブ(円)の内側にタッチし、矢印またはボタンを使用してアラームの上限および下限を設定します。

3. ゼロ点&波形にタッチします。

*ゼロ点&波形はナビゲーションバーから直接アクセスすることもできます。

図4-4 アラームとターゲットの設定

図4-5 ゼロ点&波形画面

図4-6 ゼロ点&波形画面

警告
アラームランプおよびアラーム音は、画面上でパラメータがキーパラメータとして選択され表示されている場合にしか作動しません。パラメータがキーパラメータとして選択されていない場合、アラーム音は消音されます。

フロートラックセンサーまたは動脈圧および中心静脈圧のゼロ点調整

1. フロートラックセッサーやセンサーを患者の中脚窩に合わせます。

2. アクションボタンにタッチします。

図4-7 アクション

4. 各トランスデューサーをそれぞれゼロ点調整するには、圧波形の隣にある-0-を選択し、両方のゼロ点調整を同時に行うにはすべて-0-を選択してゼロ点調整を行います。

ゼロ点調整が終わると音が鳴り、「ゼロ点に調整されました」というメッセージが表示されます。

5. トランスデューサの三方活栓を元に戻し、圧波形が適切であるか確認します。

6. モニタリングを開始するにはHomeボタンをタッチしてください。

添付Bを参照してください。

中心静脈圧の手動入力（SVRおよびSVRIを計算するため）

CVP値を入力するには、アクションメニューのCVP入力ボタンにタッチします。

* CVPの連続測定装置に接続されている場合、手動で入力することはできません。
ボリュームビュー心拍出量および間欠的TPTDモニタリング

ボリュームビューカテーテルとフロートラックセンサーをEV1000と併せて使用すると、キャリプレーションされた心拍出量の連続表示と、iCO、GEDV、EVLW、GEF、ITBVおよびPVPIの間欠的TPTD測定を実行できます。フロートラックセンサーを接続しているときには、間欠的TPTD測定を行うことはできません。TPTD測定値およびキャリブレーションされた心拍出量を得るには、フロートラックセンサーを使用する必要があります。

図4-7 TPTDモニタリング図

1. ボリュームビューカテーテル
2. フロートラックセンサー
3. CVCマニフォールド
4. 壓トランスデューサ
5. EV1000データボックス
6. 中心静脈カテーテル
7. EV1000モニター

1. ボリュームビューカテーテルを添付文書に従って挿入します。
2. プライミングしたフロートラックセンサーをデータボックスに接続し、プライミングした中心静脈圧トランスデューサをデータボックスに接続します。
3. フロートラックセンサーをボリュームビューカテーテルに接続し、適切な圧波形および圧が表示されていることを確認します。
4. トランスデューサが患者の中脳腔線の高さにあることを確認し、モニターでトランスデューサのゼロ点調整を行います。
5. データボックスのボリュームビューケーブルをボリュームビューサーミスターに接続し、EV1000に適切な血液温度が表示されていることを確認します。
6. CVCマニフォールドのCVCトランスデューサと注入液シリンジ接続部の両方をプライミングし、空気を完全に除去します。圧トランスデューサとCVCマニフォールドを接続後、ISO594または同等の規格の接合部をもつ中心静脈カテーテルに接続して、適切な圧波形および圧力が表示されていることを確認します。

図4-8 CVCマニフォールド

7. 動脈圧ベースのパラメータテクノロジーを選択する画面が表示されるので、ボリュームビューを選択してください。
8. 注入液温度プローブをCVCマニフォールドに接続します。
9. 冷却された生理食塩水の入ったシリンジを、CVCマニフォールドの注入液シリンジ接続部に接続します。
10. TPTDを開始するには、アクションボタンにタッチし、熱希釈測定アイコンにタッチします。
11. キーパッドで注入液容量を選択します。
12. 必要に応じて、肺切除やその部位（例：RUL=右上肺葉）を選択します。
13. ポーラスセット開始にタッチします。
14. 血液温度がベースラインに達するまでお待ちくださいがハイライトされます。
15. 注入がハイライトされると、選択した容量の冷却した注入液を、迅速かつスムーズに連続的に注入します。
16. 計算が終了するまでお待ちください。
17 ステップ14、15、16を繰り返します。
18 ボーラスセットを編集します。
19 有効化にタッチします。

間欠的 TPTD モニタリング
ボリュームビューカテーテルを EV1000 と併せて使用すると、iCO、GEDV、EVLW、GEF、ITBV、PVPI 等の間欠的 TPTD 測定が行われ、間欠的情報のみが表示されます。

図 4-9 TPTD モニタリング図
① ボリュームビューカテーテル
② CVC マニフォールド
③ 圧トランスデューサ
④ EV1000 データボックス
⑤ 中心静脈カテーテル
⑥ EV1000 モニター

1 ボリュームビューカテーテルを添付文書に従って挿入します。
2 データボックスのボリュームビューケーブルをボリュームビューサーミスターに接続し、EV1000 に適切な血液温度が表示されていることを確認します。
3 CVC マニフォールドの圧トランスデューサと注入液シリンジ接続部の両方をプライミングし、空気を完全に除去します。トランスデューサと CVC マニフォールドを接続後、ISO594 または同等の規格の統合部をもつ中心静脈カテーテルに接続して、適切な圧波形および圧力が表示されていることを確認します。
4 プライミングした中心静脈圧トランスデューサをデータボックスに接続します。
5 トランスデューサが患者の中脈窩線の高さにあることを確認し、モニターでトランスデューサのゼロ点調整を行います。
6 Home ボタンをタッチします。
7 注入液温度プローブを CVC マニフォールドに接続します。
8 冷却された生理食塩水の入ったシリンジを、CVC マニフォールドの注入液シリンジ接続部に接続します。
9 TPTD を開始するには、アクションボタンにタッチし、熱帯収測定アイコンにタッチします。
10 キーパッドで注入液容量を選択します。
11 必要に応じて、肺切除やその部位（例：RUL=右上肺葉）を選択します。
12 ボーラスセット開始にタッチします。
13 血液温度がベースラインに達するまでお待ちくださいがハイライトされます。
14 注入がハイライトされると、選択した容量の冷却した注入液を、迅速かつスムーズに連続的に注入します。
15 計算が終了するまでお待ちください。
16 ステップ12、13、14を繰り返します。
17 ボーラスセットを編集します。
18 有効化にタッチします。

フロートラックモードからボリュームビューモードに切り替え TPTD モニタリングと CO 測定を行う場合
EV1000 では、フロートラックモードでモニタリング中、ボリュームビューモードに切り替え TPTD モニタリングおよび CO 測定を行うことができます。
1 フロートラックモードでモニタリングが行われていることを確認してください。第 4 章参照: フロートラックシステムと圧モニタリング 4-1
2 ボリュームビューカテーテルを添付文書に従って挿入します。
3 中心静脈圧測定用の圧トランスデューサが予め接続されていない場合は、プライミングした中心静脈圧トランスデューサをデータボックスに接続します。
4 プライミングしたフロートラックセンサーや、ボリュームビューカテーテルに接続し、適切な圧波形および圧力が表示されていることを確認します。
5 データボックスのボリュームビュークabelをボリュームビューーサーミスターに接続し、EV1000に適切な血液温度が表示されていることを確認します。

6 CVCマニフォールドの圧トランスデューサと注入液シリンジ接続部の両方をプライミングし、空気を完全に除去します。トランスデューサとCVCマニフォールドを接続後、ISO594または同等の規格の検定部をもつ中心静脈カテーテルに接続して、適切な圧波形および圧力が表示されていることを確認します。

7 注入液脈温プローブをCVCマニフォールドに接続します。

8 アクションポタンにタッチし、熱温測定アイコンにタッチします。

9 フロートラックモードからボリュームビュークabelモードへの切り替えを確認してください。

10 ゼロ点ブ波形画面が表示されます。適切な圧波形および圧力が表示されていることを確認します。トランスデューサが患者の臓器様の高さにあることを確認し、モニターでトランスデューサのゼロ点調整を行います。

11 その後、前項目「間欠的TPTDモニタリング」の手順9-18を参照し、TPTD測定を行ってください。

中心静脈圧の手動入力（SVRおよびSVRIを計算するため）

CVP値を入力するには、アクションメニューのCVP入力ボタンにタッチします。

* CVPの連続測定装置に接続されている場合、手動で入力することはできません。

オキシメトリーモニタリング

オプティカル・モジュールを接続します（ウォームアップが完了するまで20分ほど待ちます）。

体外キャリブレーション

体外キャリブレーションはカテーテルを患者に挿入する前に行う方法です。

1 清潔エリアを汚染しないように、トレーカの中でお栄養のオプティカル・モジュールコネクターを取り出し、オプティカル・モジュールに接続します。

2 アクションポタンにタッチし、オキシメトリーキャリブレーションアイコンにタッチします。

3 適切なオキシメトリーラベルを選択します（ScvO₂またはSvO₂）。

4 体外キャリブレーションにタッチします。

5 HGB（ヘモグロビン）またはHct（ヘマトクリット）にタッチし、患者の最新の検査値を入力します。患者のHGBまたはHctの検査値が得られるまでは、デフォルト値を使用することもできます。

6 キャリブレーションにタッチします。

キャリブレーションが正常に完了すると、「体外キャリブレーションOK、カテーテルを挿入してください」というメッセージが表示されます。

7 施設の手順に従いカテーテルを患者に挿入します。

8 開始にタッチし、適切なアラームレベルを設定します。モニタリングが開始され、モニター画面にオキシメトリーレベルが表示されます。
体内キャリブレーション

体内キャリブレーションはカテーテルを患者に挿入してから行う方法です。

1 アクションボタンにタッチし、オキシメトリーキャリブレーションアイコンにタッチします。
2 体内キャリブレーションにタッチします。
ベースラインセットアップに問題があると、次のどちらかのメッセージが表示されます：

警告：血管壁アーチファクトまたはカテーテルの楔入が検出されました。

または

警告：信号が不安定です。

3 「血管壁アーチファクトまたはカテーテルの楔入が検出されました」または「信号が不安定です」のメッセージが表示されたら、第14章「ヘルプとトラブルシューティング」の指示に従って問題を解決し、再キャリブレーションにタッチしてベースラインセットアップを再開します。

または、次へを選択し、吸引プロセスに進むこともできます。

4 ベースラインキャリブレーションが完了したら、吸引を選択し、廃液に続いて血液サンプルをゆっくり吸引し、血液サンプルを血液ガス分析に送ります。

5 値を入力後、HGBまたはHctおよびScvO2/SvO2を入力します。

6 キャリブレーションにタッチします。
第5章：EV1000のナビゲーション

すべてのモニタリング機能は、タッチパネルの適切なエリアにタッチすることで実行できます。ナビゲーションバーには、メニューへのアクセス、アラームサイレント、モニター画面のスクロールと選択、およびスクリーンキャプチャーを実行する操作が含まれています。

ナビゲーションバー

ナビゲーションバーはほとんどの画面に表示されます。例外は起動画面と、デモモード終了のようにEV1000がモニターを停止したことを知らせる場合です。

GDTトラッキング
モニター画面選択
アクション
設定
スクリーンキャプチャー
ゼロ点&波形
アラームサイレント

図5-1 ナビゲーションバー

GDTトラッキング：このボタンにタッチするとGDTトラッキングメニューが表示されます。強化されたパラメータトラッキングにより、ユーザーは最適な範囲でキーパラメータを追跡し、管理することができます。第11章：GDTトラッキング (11-1ページ) を参照してください。

モニター画面選択：モニター画面選択ボタンにタッチすると、表示されるパラメータの数と現在の画面（カラーでハイライトされている）の両方が表示されます (5-2ページにある図5-2 「モニター画面選択ウィンドウ」の例）を参照してください。画面を選択すると、そのモニターモードがすぐに表示されます。表示したいパラメータの数に対応する数字を選択してください。

アクション：アクションボタンにタッチすると、以下のアクションにアクセスすることができます：
- 動脈圧および中心静脈圧のゼロ点調整
- 熱収縮測定
- オキシメトリー・キャリブレーション
- 算出パラメータ計算
- イベントレビュー
- CVPの入力

設定：設定ボタンにより、以下の設定画面にアクセスします：
- 患者データ
- モニター設定
- パラメータ設定
- データのダウンロード
- デモモード
- エンジニアリング
- ヘルプ

スクリーンキャプチャー：スクリーンキャプチャーボタンにタッチすると、現在の画像がキャプチャーされます。画像を保存するには「モニター」にあるUSBポートにUSBドライブを挿入する必要があります。

ゼロ点&波形：このボタンにより、ユーザーはナビゲーションバーからゼロ点&波形画面に直接アクセスすることができます。7-4ページの「動脈圧および中心静脈圧のゼロ点調整」を参照してください。

アラームサイレント：すべてのアラーム音が2分間消音されます。この2分間は新たなアラーム音が発生してもアラーム音が消音されます。
は鳴りません。2分経過するとアラーム音が再開されます。フォルトについては、現在のフォルトが解消され、次のフォルトが発生するまでアラーム音は鳴りません。別のフォルトが発生した場合、フォルトのアラーム音が鳴り始めます。

アラーム消音タイマー：アラーム音が一時的に消音されていることを示します。2分間のカウントダウンタイマーと「アラーム停止」が表示されます。

アラーム無効：アラームが無効になっていることを示します。

モニタリングの一時停止（モニタリング ポーズ）：アラームサイレントボタンを3秒程度長押しすると、モニタリングを一時停止するかどうかを確認するポップアップが開きます。この時、ナビゲーションバー上のアラームサイレントボタンは、モニタリング ポーズ解除ボタンに切り替わります。

モニタリングビュー
モニタリングビューには「グラフトレンド」、「表トレンド」、「ビックナビバー」、「フィジオビュー」、「コックピット」、「フィジオツリー」の6種類があります。これらの画面には1度に最大4つのパラメータを表示することができます。

モニタリング画面を選択するには：
1 モニター画面選択ボタンを選択します。
2 モニタリング画面に表示したいパラメータの数を表示する数字の1、2、3、または4にタッチします。
3 モニター画面のナビゲーションバーには、モニタリング画面のデザインに基づくボタンが表示されます。表示したいモニタリング画面にタッチします。

パラメータの変更
1 表示されているパラメータを変更するには、変更したいパラメータのグローブの外側にタッチします。

2 選択されているパラメータはカラーでハイライトされ、画面上の他のパラメータは外枠がカラーになっています。ハイライトされていないパラメータは選択可能なパラメータです。

3 現在のパラメータのかわりに表示する、新しいパラメータを選択します。

アラーム/ターゲットの変更
アラームターゲット画面では、選択したパラメータのアラームおよびターゲット値の設定、またアラーム音およびターゲットの設定の有効化／無効化を行うことができます。ターゲット設定は数字キーパッド、また微調整であればスクロールボタンを使って調整することができます。このポップアップ画面にはモニターされているパラメータグローブに触れるか、あるいはパラメータ設定画面を通じてアクセスします。詳細は6-5ページの「アラーム/ターゲット」を参照してください。

*ポップアップ画面は2分間無操作状態が続くと、元の画面に戻ります。

グラフトレンド
グラフトレンド画面はモニタリングしているパラメータの現在と過去のデータを表示します。連
続リアルタイム動脈圧（ART）波形も表示することができます。表示される過去のデータの長さは、時間スケールを調整することによって変更することができます。

パラメータのターゲット範囲が有効になっている場合、グラフ線の色にそれぞれ意味があります。緑はターゲット範囲内であること、黄はターゲット範囲外であるが、設定されたアラーム範囲内であること、赤は値がアラーム範囲外であることを示します。なお、パラメータのターゲット範囲が無効になっている場合、グラフ線は白くなります。パラメータのターゲット範囲が有効になっている場合、連続グラフ、間欠的グラフ共に、これらの色はパラメータのグローブにあるターゲットステータスインジケータ（ランタン）の色と一致します。

ボーラスデータが存在する場合は、連続的データと間欠的データが混在したグラフが表示されます。

上向き矢印にタッチすると、オーバーラップするパラメータが1つ増えます。下向き矢印にタッチすると、オーバーラップするパラメータが1つ減ります。パラメータが1つのみ表示されている時、下向き矢印にタッチすると、そのパラメータが消去されます。

各パラメータのアラーム限度がグラフスケール上にカラー矢印として表示されます。

動脈圧波形（ART）表示

リアルタイム血圧波形を表示するには、動脈圧波形表示ボタンにタッチしてください。動脈圧波形グラフのパネルは、最初のパラメータグローブの上に表示されます。

拍動ごとの収縮期圧、拡張期圧、および平均動脈圧の読取り値は、最初のパラメータグローブの上に表示されます。

グラフのスイープ速度（X軸スケール）を変更するには、スケール領域にタッチします。ポップアップメニューが表示され、新しいスイープ速度を入力することができます。

血圧波形の表示を停止するには、動脈圧波形非表示ボタンにタッチします。

インターベンションイベント

グラフトレンド画面でインターベンション分析ボタンをタッチすると、インターベンションタイプと詳細を選択する画面が表示されます。この画面には、メモを手入力するボックスも表示されます。図5-5「グラフトレンド-インターベンション」をご参照ください。

新たなインターベンションを入力するには:

1. 左側の新規インターベンションメニューからインターベンションのタイプを選択します。
2. 右側のメニュータブから詳細を選択します。デフォルトでは「指定なし」が選択されていま
3. 必要に応じて、キーボードアイコンを選択して、メモを手入力してください。
4. 決定ボタンをタッチしてください。

* ART表示ボタンにタッチしたとき、表示されているパラメータが1つあった場合、4番目のパラメータの表示が一時的に削除され、残る3つのパラメータのトレンドグラフの上にARTグラフが表示されます。
最近実施したインターベンションを入力するには:

1. 最新（Recents）タブからインターベンションを選択します。
2. メモを追加、編集または削除するにはキーボードアイコンにタッチします。
3. 決定ボタンにタッチします。

インターベンションイベント

<table>
<thead>
<tr>
<th>インターベンション</th>
<th>インジケータ</th>
<th>タイプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターベンション</td>
<td>▼（緑）</td>
<td>強心剤、血管拡張薬、血管収縮薬、PEEP</td>
</tr>
<tr>
<td>体位</td>
<td>▼（紫）</td>
<td>下肢挙上トレンデレンブルグ</td>
</tr>
<tr>
<td>輸液負荷</td>
<td>▼（青）</td>
<td>赤血球、膠質、晶質</td>
</tr>
<tr>
<td>カスタム</td>
<td>▼（グレー）</td>
<td>カスタムイベント</td>
</tr>
</tbody>
</table>

画面上のマーカーをタッチすると、行ったインターベンションの詳細を表示する吹き出しがポップアップします（図5-6「グラフトレンド画面 – インターベンション情報パルーン」を参照）。この吹き出しには、行ったインターベンションのタイプ、日時および入力したメモが表示されます。編集ボタンにタッチすることにより、ユーザーはインターベンションの時刻、日付およびメモを編集することができます。取り消しボタンにタッチすると、吹き出しは消えます。

* 吹き出しが表示されるのは、2分間です。

インターベンションの編集: 最初に入力した各インターベンションの時刻、日付およびメモを以下のように編集することができます:

1. 編集したいインターベンションに対するインターベンションイベントを表示するマーカーをタッチします。
2. 情報パルーン上の編集ボタンにタッチします。
3. 選択したインターベンションの時刻を変更するには時刻の調整をタッチし、キーパッドで変更後の時刻を入力します。
4. 日付を変更するには日付の調整をタッチし、キーパッドで変更後の日付を入力します。
5. メモを入力または編集するにはキーボードアイコンをタッチします。
6. 決定ボタンにタッチします。

スクロールモード: 過去へスクロールすることで、最大72時間分のデータを見ることができます。スクロール中はパラメータのデータ上に日付が表示されます。2つの日付が表示されることもあります。スクロールを開始するには、スクロールマウスボタンにタッチします。スクロールマウスボタンを長押しすると、スクロールの速度が上がります。スクロールマウスボタンにタッチしてから2分後、または戻るボタンにタッチすると、画面は元の表示形式に戻ります。スクロールの速度はスクロールボタンの上に表示されます。
表5-2 グラフトレンドのスクロール速度

<table>
<thead>
<tr>
<th>スクロール設定</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>現在の時間軸の2倍でスクロール</td>
</tr>
<tr>
<td>1x</td>
<td>現在の時間軸でスクロール (1グラフ幅)</td>
</tr>
<tr>
<td>1/2x</td>
<td>現在の時間軸の1/2でスクロール</td>
</tr>
</tbody>
</table>

スクロールモードのときにグラフエリア内にタッチすると、グラフはカーソルの下のタッチした点までスクロールします。

*最新データより後ろ、または最も古いデータより前にタッチした場合、グラフはデータがあるところまでしかスクロールしません。

スクロールモードでは現在表示されている時間軸より古いデータまでスクロールすることができます。またスクロールモードではグラフ上のある点（中心に置かれたカーソル）における正確な値を見ることもできます。

時間軸：時間軸を変更するには、変更したいパラメータの時間軸エリアにタッチし、グラフトレンド時間の値が表示される側にタッチし、別の時間を選択します。

クロック／波形：クロック／波形アイコンは、TPTD ボーラスを注入するまで表示されません。このアイコンをタップすると、最初の間欠的パラメータがその他の連続測定値のグラフにオーバーラップして表示されます。

*設定したパラメータのいずれかがアラーム状態にある場合、グラフトレンドのクロック／波形ボタンは無効になります。

表トレンド

表トレンド画面は、選択したパラメータおよびその履歴を表形式で表示します。表トレンド画面は連続データのみを表示します。間欠的データは表示されません。

*このモニタリング画面では連続的%変化インジケータは表示されません。
表トレンドスクロールモード
過去へスクロールすることで、最大72時間分のデータを見ることができます。スクロールモードはセルの数に基づきます。3つのスクロール速度（1x、6x、40x）から選択することができます。スクロール中はフロートラック平均時間は表示されません。
画面スクロール中は、表の上に日付が表示されます。時間が2日にまたがっている場合、両方の日付が表示されます。

1 スクロールを開始するには、グレーの矢印の1つを長押しします。スクロールボタンの上にスクロール速度が現れます。

2 スクロールモードを出るには、スクロール矢印から手を離すか、戻るボタンにタッチします。

*スクロールボタンから手を離して2分後、または戻るボタンにタッチすると、画面は元の画面に戻ります。

ビッグナンバー
パラメータを他の画面より大きいサイズで表示します。この画面では、医師やその他のスタッフが遠くからも値を容易に見ることができます。

フィジオビュー画面
フィジオビューでは、モニタリングしているパラメータとその測定値を心臓、肺、血液循環のビジュアルと共に表示します。肺は連続モードではグレーで表示され、肺血管外水余量の情報が得られないことを示します。
フィジオビュー画面では心臓の拍動を表現するために心臓が動いていますが、これは心拍数を正確に示すものではありません。図5-10は、TPTDボーラス注入後、フロートラックセンサー、プリセッパカテーテルおよびCVPがすべて接続されている場合の、フィジオビュー画面を示しています。

詳細については第10章「フィジオビューおよびフィジオツリーモニタリング画面」を参照してください。

コックピット画面
この画面ではモニタリングしているパラメータの値がグローブ（円）に表示されます。ターゲット範囲、ターゲット範囲外、ターゲット値が視覚的に表示され、患者の現在の値が針で示されます。更にパラメータがアラーム領域内にある場合、そのグローブ内の値が点滅します。
パラメータは複雑なターゲットとアラームインジケータを表示します。パラメータの表示範囲はグラフトレンドの最小値と最大値の設定を使用したゲージスケールによって形成されます。針はゲージスケールで現在値を示します。ターゲット範囲が有効になっている場合、ターゲットとアラーム領域を示す円の外周は、赤、黄、緑で表示されます。ターゲット範囲が有効になっていない場合、円の外周はすべてグレーとなり、ターゲットとアラームインジケータは表示されません。スケールの限界をいつ越えたかは、矢印が変化して示します。

図5-11 ゴッピット画面

フィジオツリー

図5-12に示したフィジオツリーは、システムで使用できるほとんどのパラメータと、パラメータ間の関係を表示します。ScvO2を使用しているときは酸素運搬量と消費量のバランスも示します。画面にはパラメータ間の関係を示す線がハイライト表示されます。

過去のデータを確認するには、クロック／波形アイコンにタッチしてください。

各パラメータ間の線を辿ると、問題が考えられるパラメータに辿り着くようになっています。あるパラメータのターゲットステータスインジケータ（ランタン）が红色になり、その1つ上のランタンが緑である場合、黄色のパラメータの上の縦線と下の横線が黄色になります。詳細は、第10章「フィジオビューおよびフィジオツリーモニタリング画面」を参照してください。

図5-12 フィジオツリー画面

ステータスインジケータ

各パラメータグローブの上にあるターゲットステータスインジケータ（ランタン）は患者の現在の状態を示します。患者の状態が変化すると、この色が変化します。グローブは追加情報を表示することもあります：

SVVフィルタリング超過インジケータ：SVVフィルタリング超過インジケータ記号は、高度の脈拍変動がSVV値に影響している可能性がある場合表示されます。

SQIバー：SQIバーは血管内のカテーテルの状態と位置に基づくシグナルオプティティを示します。SQIバーのポックスはオキシメトリーゲナルオプティティレベルに基づいて変動し、レベルを示す数字は一番左のポックスに表示されます。SQIレベルはオキシメトリーキャリプレーション終了後、2秒おきにアップデートされ、4つのシグナルレベルを表示します：

図5-13 パラメータグローブ

図5-7 EV1000のナビゲーション
表 5-4 SQI レベル

<table>
<thead>
<tr>
<th>レベル</th>
<th>色</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>緑</td>
<td>標準</td>
</tr>
<tr>
<td>2</td>
<td>緑</td>
<td>中（適度に調整されたシグナル）</td>
</tr>
<tr>
<td>3</td>
<td>黄</td>
<td>低</td>
</tr>
<tr>
<td>4</td>
<td>赤</td>
<td>無効</td>
</tr>
</tbody>
</table>

注意
シグナルクオリティーインジケータ（SQI）バーは、オキシメトリーグローブの外側のタッチスペースにのみ表示されます。
(第 5、10 章)

フォルト：フォルトが発生した場合、フォルト状態が解消されるまでステータスバーにフォルトメッセージが表示されます。複数のフォルト、警告、アラームがある場合、メッセージが 2 秒ごとに切り換わります。
フォルトが発生するとパラメータの計算は停止され、関連のある各パラメータグローブには最後に測定されたパラメータの値、時刻および日付が表示されます。

連続的%変化インジケータ：このインジケータは変化率（%）と変化の時間間隔を示します。

↑7% (5分) ↓38% (20分)

連続的%変化インジケータはほとんどのモニター画面に表示されますが、表トレンド画面には表示されません。

ターゲットステータスインジケータ：各グローブの上に表示されるカラーインジケータで、患者の状態を表します。インジケータの色とそれが表す意味については、表 6-1「ターゲットステータスインジケータの色」を参照してください。

モニタリング画面のナビゲーション
モニタリング画面には、標準的なナビゲーション手順がいくつかあります。

垂直スクロール
画面によっては、一度に 1 つの画面には収まらない情報を持つものがあります。イベントレビューやなどのレビューリストに垂直矢印が存在する場合、上向きまたは下向き矢印にタッチすることによって続きの項目を見ることができます。

リストから選択を行う場合は、垂直スクロール矢印は一度に 1 項目ずつ上下します。

モニタリング画面のナビゲーション手順のいくつかです。
ホーム: Home ボタンにタッチすると、直前に見ていたモニタリング画面に戻り、画面上のデータへの変更が保存されます。

戻る: 戻るボタンにタッチすると、前のメニュー画面に戻り、画面上のデータへの変更が保存されます。

取消: 取消ボタンにタッチすると、すべての入力が取消されます。

患者データ画面など一部の画面には取消ボタンがありません。患者データを入力すると、システムにすぐに保存されます。

リストボタン: 一部の画面には、2つの部分に分かれているボタンがあります。

このような場合、ボタンのどこかにタッチすると、選択可能項目のリストが表示されます。ボタンの右側には現在の選択が表示されます。

バリューボタン: 一部の画面には以下のような四角いボタンがあります。このボタンにタッチすると、キーパッドが表示されます。

トグルボタン: オン／オフのような2つの選択の間に選択肢がある場合、トグルボタンが表示されます。

選択を切り替えるには、ボタンの反対側にタッチしてください。

キーパッド: データを入力するには、キーパッドのキーにタッチしてください。

情報バー
情報バーはすべてのモニタリング画面と、ほとんどのアクション画面に表示されます。これは現時刻、日付、CO 平均時間（20 秒または5分）、血液温度（測定している場合）、および画面ロックアイコンを示します。

動脉圧センサーが接続されていない場合、情報バーは図 5-16 のように表示されます。システムがフロートラックモードもしくはボリュームビューにセットされている場合は、それぞれ図 5-17、5-18 のように情報バーは表示されます。

画面ロック
モニターを掃除または移動するときなど、画面をロックしたい場合に使用します。内部タイマーによってロック解除のカウントダウンが始まると、画面のロック解除は自動的に行われます。

1 画面ロックアイコンにタッチします。
2 画面ロックポップアップから、画面をロックしたい時間にタッチします。
3 情報バーとステータスバーは次のようになります。

![画面ロック](image1)

図 5-20 画面ロック

4 画面ロックを解除するには、画面ロックアイコンを長押しします。

ステータスバー
ステータスバーはすべてのモニタリング画面に表示されます。ここにはフォルト、アラーム、警告、一部の警告と注記が表示されます。複数のフォルト、警告、アラームがある場合、メッセージが2秒ごとに切り換わります。

![ステータスバー](image2)

図 5-21 ステータスバー
第6章：モニターの表示オプション

本章では、モニターの表示オプションについて説明します。これには表示言語、アラーム音量、日付、時刻、および画面フォーマットが含まれます。

患者データ
システムの電源を入れると、最後の患者のモニタリングを継続するか、新規患者のモニタリングを開始するかの選択肢が表示されます。

* 最後にモニタリングした患者のデータが12時間以上前のものである場合、新規患者のモニタリングを開始する選択肢のみ表示されます。

図6-1 新規または継続選択画面

新規患者
新規患者モニタリングを開始すると、前の患者のデータはすべて消去されます。アラーム範囲、連続パラメータはそれぞれのデフォルト値に設定されます。

システムを始動させるときに新規患者を入力することも、システムが作動中に新規患者を開始することもできます。

警告
新たな患者に対してEV1000システムを接続する際には、「新規患者」を実行するか、患者データファイルを消去してください。これを行わないと、履歴表示に前の患者のデータが表示されることもあります。

1 モニターの電源を入れた後、新規または継続選択画面が表示されます。新規患者にタッチし、ステップ6に進みます。
または
モニターの電源がすでにオンになっている場合には、設定ボタンにタッチし、ステップ2に進みます。

2 患者データにタッチします。

3 新規患者にタッチします。

4 確認画面ではいにタッチし、新規患者をスタートさせます。

5 新規患者データ画面が表示されます。

6 患者情報を入力し、キーにタッチしてデータを保存し、患者データ画面に戻ります。

7 患者IDにタッチし、キーを押して患者の病院IDを入力します。このとき「/」は入力しないでください。

8 身長にタッチし、キーを押して患者の身長を入力します。使っている言語のデフォルト単位がキーの右上に表示されます。測定単位を変更するには単位にタッチします。

9 年齢にタッチし、キーを押して患者の年齢を入力します。

10 体重にタッチし、キーを押して患者の体重を入力します。使っている言語のデフォルト単位がキーの右上に表示されます。測定単位を変更するには単位にタッチします。

11 性別にタッチし、男性か女性にタッチします。

12 身長と体重からBSA(DuBois式)が計算されます。

13 Homeボタンにタッチしてモニタリング画面に戻ります。

* すべての患者データを入力するまで、Homeボタンは無効です。

患者モニタリングの継続
最後の患者データが12時間以内である場合、システムの電源をオンにすると患者の基本データと患者IDが表示されます。その患者のモニタリ
ボタンを繰り返す場合、患者データの読み込みが行われ、トレンドデータが検索されます。そして、最後に見ていたモニタリング画面が表示されます。

1. 同じ患者で継続にタッチします。
2. 壓力トランスデューサのゼロ点調整を行います。
3. オキシメトリーをモニタリングしている場合、キャリブレーションをするか、オプティカル・モジュールからデータを再読み込みます。

患者データの表示
1. 設定ボタンにタッチします。
2. 患者データにタッチします。患者データが表示されます。画面には新規患者ボタンも表示されます。
3. 戻るボタンにタッチして、設定画面に戻ります。

モニター設定
モニター設定画面ではモニターに関連するいくつかの設定を変更することができます。

EV1000は数ヶ国語が表示できます。言語選択画面は、EV1000システムを初めて起動したときに表示されます。2回目以降の起動時に言語選択画面は表示されませんが、表示言語の変更はいつでも行うことができます。

言語を選ぶと、デフォルトの時刻と日付フォーマット、および単位とCO平均値が設定します。これらは選択した言語とは関係なく、それぞれ変更することも可能です。

* 停電後に電源がEV1000に再投入された場合、停電前のアラーム設定、アラーム音量、ターゲット設定、モニタリング画面、パラメータ構成、言語および単位の選択などのシステム設定が自動的に復元します。

言語の変更
1. 設定ボタンにタッチします。
2. モニター設定にタッチします。
3. 基本設定にタッチします。

4. 言語のリスト部分にタッチし、画面で使用する言語を選択します。
5. Homeボタンにタッチし、モニタリング画面に戻ります。

モニター基本設定
モニター基本設定はすべての画面に反映されるものです。表示言語、使用する単位、およびアラーム音量があります。スクリーンキャプチャー音は、任意にオン／オフの設定が可能です。

* 停電後に電源がEV1000に再投入された場合、停電前のアラーム設定、アラーム音量、ターゲット設定、モニタリング画面、パラメータ構成、言語および単位の選択などのシステム設定が自動的に復元します。
日付、時刻表示形式の変更

English（US）の日付デフォルトは月/日/年で、時刻デフォルトは12時間表示です。

国際言語を選択すると、日付デフォルトは付録C「モニター設定とデフォルト設定」にある表示形式に、時刻デフォルトは24時間表示になります。

1 設定ボタンにタッチします。
2 モニター設定にタッチします。
3 日付／時刻にタッチします。
4 日付の表示形式のリスト部分にタッチし、使用する形式を選択します。
5 時刻の表示形式のリスト部分にタッチし、使用する形式を選択します。
6 Homeボタンにタッチし、モニタリング画面に戻ります。

日付または時刻の調整

サマータイムなど、システムの時刻を調整する必要がある場合、時刻または日付を変更すると、その変更を反映するようにトレンドデータがアップデートされます。

保持されているデータは、時刻の変更を反映するように更新されます。データボックスが接続されていると、新しい時刻で更新されます。

1 設定ボタンにタッチします。
2 モニター設定にタッチします。
3 日付／時刻にタッチします。
4 日付を変更するには、日付の調整の値入力部分にタッチし、キーパッドで日付を入力します。
5 時刻を変更するには、時刻の調整の値入力部分にタッチし、時刻を入力します。
6 Homeボタンにタッチし、モニタリング画面に戻ります。

モニタリング画面の設定

モニター設定画面から、ユーザーはフィジオビューおよびフィジオツリーのオプションを設定することができます。

1 設定ボタンにタッチします。
2 モニター設定にタッチします。
3 モニタリング画面にタッチします。
4 アラーム＆ターゲット画面で、紫色のタブをスライドし係数または係数なしを表示し、選択します。
5 フィジオビュー画面、フィジオツリー画面に表示するパラメータをGEDVかITBVに選択します。
6 TPTDレビューや、フィジオビューおよびフィジオツリー画面に表示するパラメータをGEFかCFIに選択します。
7 SVVインジケータのオン／オフを切り替える場合は、SVVをタッチしてください。
シリアルポートのセットアップ
シリアルポートのセットアップメニューを使用して、シリアルポートをデジタルデータ転送用に設定します。
戻るボタンにタッチするか、無操作状態で2分経過するまで、画面は表示され続けます。
1 設定ボタンにタッチします。
2 モニター設定にタッチします。
3 シリアルポートのセットアップにタッチします。
4 変更したいプロトコルの選択部分にタッチします。
5 終了後、戻るボタンにタッチします。

モニターデフォルトの復元
デフォルトに復元すると、EV1000 クリティカルケアモニターはすべての機能を停止し、システムを工場設定デフォルト状態に復元します。

添付 C を参照してください。

注意
デフォルトに復元すると、すべての設定を工場出荷時に戻します。設定変更やカスタマイズしたものはすべて失われます。

注意
患者のモニター中にデフォルトを復元しないでください。

1 設定ボタンにタッチします。
2 モニター設定にタッチします。
3 すべてのデフォルトの復元にタッチします。
4 はいにタッチし続けるです。説明画面が表示されます。
5 モニターとデータボックスの電源をオフにし、再起動します。

添付 D を参照してください。

パラメータ設定
1 設定ボタンにタッチします。
2 パラメータ設定にタッチします。

アラーム／ターゲット
アラーム／ターゲット画面から、ターゲットの調整、アラーム音の有効化／無効化を行うことができます。アラームは優先度が「中」または「高」のときに起きます。アラームおよびアラーム音が有効になると表示されているパラメータのみです。

* IFMout プロトコルによる患者モニタリングシステムをサポートするため、リアルタイム通信に9ピンのRS232シリアルポートがあります。
生理的パラメータ COC、SV/SVI、および ScvO2/SvO2 については、アラーム上限の優先度は「中」、アラーム下限の優先度は「高」です。生理的パラメータ SVR/SVRI および SVV の場合、アラームの優先度は常に「中」です。

アラームサウンド
アラーム音はモニタリング画面から直接止めることができます。アラームは 2 分間消音されます。

EV1000 モニターが英語以外の言語（日本語を除く）に設定されている場合、パラメータのアラームを無効にしてあっても、3 分おきに 3 秒ずつアラーム音が鳴ります。

1 アラームサウンドボタンにタッチします。

* アラーム音は 2 分間消音することができますが、ターゲットを無効にしない限り、アラームはオフになりません。ターゲットを無効化する方法は、本章の後半で説明します。

警告
患者の安全性に問題を引き起こす可能性がある場合は、アラーム音をオフにしないでください。

アラーム設定
アラーム音の範囲は、低－中－高で表示され、デフォルトは中です。これはアラーム、フォルト、警告に適用されます。アラーム音量はいつでも変更することができます。

1 設定ボタンにタッチします。
2 モニター設定にタッチします。
3 基本設定にタッチします。
4 アラーム音ボタンの値入力部分にタッチし、使用する音量にタッチします。
5 Home ボタンにタッチしてモニタリング画面に戻ります。

警告
アラームの音量が、アラームとして十分に機能するレベルに設定されていることを確認してください。適切なレベルに設定されていない場合、患者の安全性上、問題を引き起こす可能性があります。

ターゲット設定
ターゲットとは医師が設定する視覚的インジケータ（ランタン）で、患者が望ましいターゲットゾーン内か（緑）、警告ゾーン内か（黄）、注意ゾーン内か（赤）を示します。ターゲットゾーンの使用は医師によって有効化／無効化することができます。アラーム（上限／下限）とターゲットゾーンの違いは、アラームはパラメータが点滅して、アラーム音が鳴ることです。

「アラーム」が使えるパラメータは「アラーム／ターゲット」設定画面にベルアイコンで表示されます。デフォルトのアラーム上限／下限が、そのパラメータのレッド注意ゾーンとなります。アラーム上限／下限が設定できないパラメータは、「アラーム／ターゲット」設定画面にベルアイコンが表示されませんが、ターゲットゾーンは設定することができます。アラーム上限／下限を超えるパラメータターゲットを設定しないでください。

<table>
<thead>
<tr>
<th>表 6-1 ターゲットステータスインジケータの色</th>
<th>色</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>緑</td>
<td>緑のターゲットゾーンは医師によって設定されたターゲット範囲内にあることを示します。</td>
<td></td>
</tr>
<tr>
<td>黄</td>
<td>黄のターゲットゾーンはターゲット範囲外であり、医師によって設定されたアラームまたは注意の範囲には入っていないが、警告範囲内にいることを視覚的に示します。</td>
<td></td>
</tr>
<tr>
<td>赤</td>
<td>赤のアラームまたはターゲットゾーンはアラーム状態であることを示し、「アラーム／ターゲット」設定画面のベルアイコンで示されます。デフォルトのアラーム上限／下限もそのパラメータのレッド注意ゾーンの範囲になります。アラーム上限／下限を設定できないパラメータは、そのパラメータの「アラーム／ターゲット」設定画面にベルアイコンが表示されませんが、ターゲットゾーンを設定することはできます。アラームおよびターゲットゾーンの範囲は、医師が設定します。</td>
<td></td>
</tr>
<tr>
<td>グレー</td>
<td>ターゲットを設定しない場合、ステータスインジケータはグレーとなります。</td>
<td></td>
</tr>
</tbody>
</table>

アラーム／ターゲットセットアップ画面
「アラーム／ターゲットセットアップ」画面では、各パラメータのアラームおよびターゲットを確認し、設定することができます。各パラメータの設定はパラメータボックスに表示されます。現在設定されているパラメータが、最初に表示されます。残りのパラメータは決められた順番で表示されます。
れます。パラメータはターゲット範囲が何に基づいているかを示します：カスタムデフォルト、Edwardsデフォルト、または修正。

<table>
<thead>
<tr>
<th>デフォルト名</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>カスタムデフォルト</td>
<td>そのパラメータに対してカスタムデフォルトが設定されており、パラメータはそのデフォルトから変更されていません。</td>
</tr>
<tr>
<td>Edwardsデフォルト</td>
<td>パラメータはオリジナルの設定から変更されていません。</td>
</tr>
<tr>
<td>修正</td>
<td>この患者のため、設定が修正されました。</td>
</tr>
</tbody>
</table>

アラームおよびアラーム音の設定は、表示されているパラメータだけに適用されます。

アラーム／ターゲットを変更するには：

1. 設定ボタンにタッチします。
2. パラメータ設定にタッチします。
3. アラーム／ターゲットにタッチします。
4. 変更するパラメータのアラーム／ターゲットボップアップを表示するには、そのパラメータボックス内のどこかにタッチします。

全ターゲット設定

全ターゲットを一度に簡単に設定または変更することができます。全設定画面では以下を行うことができます：

・ 全パラメータのアラームとターゲット設定をカスタムデフォルトに設定。
・ 全パラメータのアラームとターゲット設定をカスタムデフォルトに元元。
・ 全パラメータのアラームとターゲット設定をEdwardsデフォルトに復元。
・ 該当する全パラメータのアラーム音を有効または無効にする。
・ 全パラメータのターゲット範囲を有効または無効にする。

1. 設定ボタンにタッチします。
2. パラメータ設定にタッチします。
3. アラーム／ターゲットにタッチします。
4. すべて設定ボタンにタッチします。
5. 全パラメータについてアラーム音をオンまたはオフにするには、アラーム音のオン／オフボタンにタッチし、パスワードを入力します。
6. ターゲット範囲を設定できるパラメータの全ターゲットを有効化または無効化するには、ターゲットのオン／オフボタンにタッチします。
7. すべての設定をカスタムデフォルトに復元するには、すべてをカスタムデフォルトに元元にタッチします。「すべてのアラームおよびターゲットをカスタムデフォルトに復元します」というメッセージが表示されます。
8. 確認ポップアップで次へにタッチし、変更を確認します。
9. すべての設定をEdwardsデフォルトに復元するには、すべてをEdwardsデフォルトに元元にタッチします。「すべてのアラームおよびターゲットをEdwardsデフォルトに復元します」というメッセージが表示されます。
10. 確認ポップアップで次へにタッチし、復元を確認します。
カスタムデフォルト設定
カスタムデフォルトを設定するには、すべて設定画面または個々のアラーム／ターゲットの設定画面からいつでも有効化または無効化することができます。

1 設定ボタンにタッチします。
2 パラメータ設定にタッチします。
3 アラーム／ターゲットにタッチします。
4 すべて設定にタッチします。
5 カスタムデフォルト設定ボタンにタッチします。

図6-9 カスタムデフォルトのアラーム／ターゲット設定

6 設定するパラメータにタッチします。
7 各ターゲット設定について値入力部にタッチし、値を入力します。
8 各パラメータについてステップ 6 〜 7 を繰り返します。次または前のパラメータセットを表示するには、画面の下にある右向きまたは左向き矢印にタッチします。
9 すべてのパラメータ設定を係数化または係数なしにタッチします。
10 終了後、すべて確認にタッチします。

1 使用するパラメータのターゲットとアラーム設定
アラームターゲットポップアップで、選択したパラメータのアラームとターゲット値を設定することができます。アラーム音、またアラームおよびターゲットのすべての設定を有効化または無効化することもできます。ターゲット設定値は数字キーパッド、または微調整でなければスクロールボタンを使って調整することができます。

1 グローブの内側にタッチすると、そのパラメータのターゲットポップアップが表示されます。
時間の間隔と平均

時間の間隔と CO 平均画面では、連続的%変化時間を選択することができます。

*2分間無操作状態が続くと、モニタリングビューに戻ります。

1 設定ボタンにタッチします。
2 パラメータ設定にタッチします。
3 時間の間隔/平均にタッチします。

4 連続的%変化間隔の値入力部にタッチし、以下の時間の間隔オプションから1つを選択します:
 ・なし
 ・5分
 ・10分
 ・30分

5 CO平均時間の値入力部にタッチし、以下の平均時間の間隔オプションから1つを選択します:
 ・20秒
 ・5分

6 Homeボタンにタッチし、モニタリング画面に戻ります。

スケール調整

グラフトレンドデータはグラフの左から右に描かれ、最新のデータが右に表示されます。パラメータのスケールは縦軸、時間スケールは横軸です。

スケール調整画面では、パラメータと時間の両方のスケールを設定することができます。選択されているパラメータがリストのトップにあります。追加のパラメータを確認するには水平スクロールボタンを使用します。

1 設定ボタンにタッチします。
2 パラメータ設定にタッチします。
3 スケール調整にタッチします。

*2分間無操作状態が続くと、モニタリングビューに戻ります。
各パラメータについて下限ボタンにタッチして、グラフに設定したい下限値を入力します。また上限ボタンにタッチして上限値を入力します。

グラフトレンド時間単位の値入力部にタッチし、グラフに表示する総時間を設定します。次の選択肢があります:
- 3分 · 1時間 · 12時間
- 5分 · 2時間（デフォルト） · 18時間
- 10分 · 4時間 · 24時間
- 15分 · 6時間 · 48時間
- 30分

表示間隔の値入力部にタッチし、表示間隔を設定します。次の選択肢があります:
- 1分（デフォルト） · 30分
- 5分 · 60分
- 10分

次のパラメータセットに進むには、左下の矢印にタッチします。

Homeボタンにタッチして、モニタリング画面に戻ります。

エンジニアリング

エンジニアリング画面はエドワーズライフサイエンス株式会社のエンジニアが操作するための画面で、パスワードによって保護されています。エラーが発生した場合、第14章「ヘルプとトラブルシューティング」を参照してください。
第7章：フロートラック連続モニタリング

EV1000 クリティカルケアモニターをフロートラックシステム（フロートラックセンサー、連続SVRを得るためのオプションのCVPトランスデューサ）と併せて使用すると、患者の動脈圧波形を使用して、心拍出量やその他の重要な血行動態パラメータを連続測定することができます。

パラメータのグローブには、直近に測定された値が表示されます。例えば、下の図はリットル/分（L/min）単位のCO測定値を示しています。フロートラックシステムから得られる他のパラメータには、心係数（CI）、1回拍出量（SV）、1回拍出量係数（SVI）、1回拍出量変化（SVV）、体血管抵抗（SVR）、および体血管抵抗係数（SVRI）、収縮期压（SYS）、拡張期压（DIA）、平均動脈圧（MAP）、および脈拍数（PR）があります。アラームが無効になっている場合、ラベルの横にアラーム無効アイコンが表示されます。

* SVRおよびSVRIは、中心静脈圧を測定しているときにのみ表示することができます。

フロートラックケーブルの接続

フロートラックケーブルはフロートラックセンサーとEV1000クリティカルケアモニターを接続するために設計されたケーブルです。

1. ケーブルの片方の端をEV1000データボックスに接続します。
2. ケーブルの反対側の端をフロートラックセンサーに接続します。ケーブルをセンサーに接続するまたはセンサーから外すときは、まずすぐに少し入れてください。（フロートラックセンサーの添付文書を参照）。
3. 施設の手順に従って、トランスデューサをキャリブレーションし、適切な信号が送信されていることを確認します。
4. EV1000システムのメッセージに沿って、フロートラックセンサーのゼロ点調整を行い動脈圧ベースのパラメータテクノロジーを選択してください。
5. ケーブルを使用しない時は、露出しているケーブルコネクターを濡らせないようにしてください。コネクターに液体が入ると、ケーブルの誤作動、または圧の読取りが不正確になることがあります。

警告
一度使用したフロートラックセンサーは再滅菌または再使用しないでください。カテーテルの添付文書を参照してください。

注意
以下の要因によりAPCOの測定が正しく行われない場合があります:
・不適切なゼロ点調整およびセンサー/トランスデューサの高さ調整
・オーバーダンピング、またはアンダーダンピングになっている。
・血圧に過剰な変化がある。血圧が変化する例としては以下のものがありますが、これに限られないわけではありません：
* 大動脈内バルーンポンプ
* 動脈圧が不正確だと思われるような臨床状態や、大動脈の圧を反映していないと思われる臨床状態。例としては以下のものがありますが、これらに限られないわけではありません：
* 橋骨動脈波形に著しい影響を及ぼす著しい末梢血管収縮
* 肝移植術後になされることがあるハイパーカイミック（著しい高心拍出量）状態
* 患者の過度の運動
* 電気メスまたは電気的外科装置による干渉
* 大動脈弁逆流がある場合、弁疾患の程度および左室への逆流量により、1回拍出量/心拍出量値が高くなることがあります。

注意
図7a COモニタリング中のグローブ

モニタが現在のCO値を計算することができない場合、COまたはCI値は最後の値でフリーズし、その値を得た時刻が表示されます。

警告
小児患者におけるAPCO測定の有効性は検証されません。
警告
損傷した、または電気部品が露出したフロートラックセンサーを使用しないでください。
警告
アクセサリーの取り付けや使用、および関連する警告、禁忌・禁止、注意および仕様については、使用するアクセサリーの添付文書（取扱説明書）を参照してください。

図7-2 フロートラックセンサーの接続

①フロートラックセンサー ④EV1000モニターサー
②圧トランスディユ ⑤ベッドサイド圧モニター
③EV1000データボックス ⑥中心静脈カテーテル

注意
ケーブルの抜き差しを行う場合は、ケーブルではなくコネクター部を持ってください。
注意
コネクターを捻ったり、折ったりしないでください。
患者データの入力およびモニタリングオプションの選択

1. 患者データは設定ボタンにタッチすることによって入力することができます。

2. 患者データにタッチし、患者データを入力します（6-1ページの「患者データ」を参照してください）。

3. Homeボタンにタッチします。

4. パラメータを変更するには、グローブの外側にタッチし、表示したいパラメータを選択します。これはすべてのモニタリング画面に反映されます。

平均時間の設定

1. 設定ボタンにタッチします。

2. パラメータ設定にタッチします。

3. 時間の間隔/平均にタッチします。

4. CO平均時間の値入力部にタッチし、以下の平均時間の間隔オプションの1つにタッチします：
 ・20秒（デフォルト。推奨される時間間隔）
 ・5分

5. 戻るボタンにタッチします。

選択されているパラメータはカラーでハイライトされ（選択することができません）、画面上の他のパラメータは外枠がカラーになっています。
ターゲットとアラームの限界設定

ターゲットとアラームの限界設定

グローブ、コックピット、または動脈圧波形表示

の隣にある BP パラメータウィンドウ内をタッチ

して、パラメータグローブの上にターゲットメ

ニューをポップアップさせます。アラームおよび

ターゲット値を変更するにはこのメニューを使

います。

ターゲットの上限および下限を変更するには矢

印を使用します。

*限界の値を変更しても、赤、黄、および緑の長方形のサ

イズ、形は変わりません（詳細については 6-6 ページの

「ターゲット設定」を参照ください）。

1 パラメータグローブにタッチし、アラーム／

ターゲットをポップアップさせます。

図7-6 アラーム／ターゲット

2 スクロールボタンにタッチし、アラーム／

ターゲット値を設定します。

3 決定ボタンにタッチし、値を保存します。

警告

アラームランプおよびアラーム音は、画面上で

パラメータがキーパラメータとして選択される表

示されている場合にしか作動しません。パラメータがキーパラメータとして選択されていな

い場合、アラーム音は消音されます。

動脈圧および中心静脈圧のゼロ点調

整

すべての圧のゼロ点調整画面では、動脈圧および

中心静脈圧トランスデューサのゼロ点調整を行

うことができます。ゼロ点調整の正常な完了と、

圧トランスデューサが大気開放されていること

を示す平らな線を確認するために圧波形が表示

されます。

1 アクションボタンにタッチします。

2 ゼロ点&波形にタッチします。

3 センサーが添付文書通り、患者の中腋窩線

の高さになっているか確認します。

4 すべて-0-にタッチします。

5 圧値がゼロで安定していることを確認した

ら、活栓を回してセンサーが患者の圧を読み

取るようにします。
6. 壓値がゼロで安定したら、Home ボタンにタッチします。

7. 動脈圧ベースのパラメータテクノロジーを選択する画面が表示されるので、フロートラックを選択してモニタリングを開始してください。CO の連続測定が開始されます。

ゼロ点調整が終了すると音が鳴り、「ゼロ点に調整されました」というメッセージが表示されます。

* 大気に対してゼロ点調整するのに非常に大きな動脈圧または CVP 補正が必要な場合、「選択されたゼロ点が範囲外です」という警告が画面に表示されます。センサーが正しく組み立てられているか、フラッシュされているか、患者の中脛窩線の高さに合わせられているか確認し、再度試みてください。

波形確認

ゼロ点波形画面に動脈圧波形が表示されます。「動脈圧波形を確認してください」というフォルトに対しては、これを使用して動脈圧波形のクオリティを評価します。このフォルトは動脈圧信号のクオリティが長時間にわたってよくない場合に表示されます。

縦軸のスケールは自動的に平均 BP 値 ± 50 mmHg に調整されます。

警告

EV1000 クリティカルケアモニターを脈拍計または主たる血圧計として使用しないでください。

中心静脈圧の手動入力

CVP の連続測定装置に接続されていない場合、ユーザーは連続的な SVP/SVRI を算出するための CVP 値を CVP 入力画面から手動で入力することができます。12-1 ページの「中心静脈圧の手動入力」を参照してください。

算出パラメータ計算

患者の DO₂、VO₂、SVR または CPO を計算するためには算出パラメータ計算オプションを選択します。算出パラメータ計算機能を使用すると、これらのパラメータを一括で計算できるよう表示することができます。詳細は 12-1 ページの「算出パラメータ計算」を参照してください。
第8章: ボリュームビュー・モニタリング:
間欠的 TPTD および連続心拍出量

EV1000 クリティカルケアモニターをボリュームビュー・カテーテルおよびフロートラックセンサーと併せて使用すると、心拍出量が連続表示され、また TPTD による CO, GEDV, EVLW, GEF, ITBV および PVPI の間欠的測定が行われます。経肺熱希釈法（TPTD）で得られるパラメータは、温度と容量が予めわかっている注入液を中心静脈に注入することにより測定されます。注入液は中心静脈から右心肺血管系、左心を通って動脈系に流れます。熱稀釈ウォッシュアウト曲線は、ボリュームビュー・カテーテルのサーミスターを使って測定されます。TPTD による間欠的測定値には以下のものがあります:

- CFI
- PVPI
- GEF
- iCO
- GEDV
- iCI
- GEDI
- iSV
- EVLW
- iSVI
- ELWI
- iSVR
- ITBV
- iSVRI
- ITBI

さらに、ボリュームビュー・カテーテルおよびフロートラックセンサーを繋いだ EV1000 クリティカルケアモニターは、キャリブレーションされた心拍出量を連続的に表示します。

ボリュームビュー CO (VV-CO; ボリュームビューパラメータ測定時にフロートラックセンサーによって測定される心拍出量) アルゴリズムは静的心拍出量キャリブレーションと生理的変数の連続評価に基づいています。

TPTD を実行するには:
- CVP を測定するため、中心静脈カテーテルをトランスデューサに接続し、EV1000 システムと生体情報モニターに接続する必要があります。
- ボリュームビュー・カテーテルを接続しゼロ点調整を行います。ボリュームビュー・カテーテルと中心静脈カテーテルの添付文書の手順に従ってください。

キャリブレーションされた連続的な CO を測定するには:
- フロートラックセンサーを取り付けてゼロ点調整を行います。その後、動脈圧ベースのパラメータ設定ノロジーとして、ボリュームビューを選択してください。EV1000 によるフロートラックセンサーのゼロ点調整については添付文書の手順に従ってください。

注意
以下の要因により TPTD またはボリュームビュー CO 測定が正しく行われない場合があります:
- 不適切なゼロ点調整およびセンサー/トランスデューサの高さ調整
- オーバーダンピング、またはアンダーダンピングになっている。
- 助松が不正確であることと思われるような臨床状態や、大動脈の圧を反映していないと思われる臨床状態。
- 患者の過度な運動
- 電気メスまたは電気的外科装置による干渉
- 助松が不正確であることと思われるような臨床状態や、大動脈の圧を反映していないと思われる臨床状態。
- 患者の過度の運動
- 電気メスまたは電気的外科装置による干渉
- 助松が不正確であることと思われるような臨床状態や、大動脈の圧を反映していないと思われる臨床状態。

注意
小児患者における TPTD およびボリュームビュー CO 測定の有効性は検証されていません。
図 8-1 EV1000 クリティカルケアモニターとボリュームビューセット
TPTD 手順

注入液シリンジと注入液
冷却された生理食塩水の入ったシリンジを冷却注入液シリンジ接続部に接続します。

1 アクションボタンにタッチします。

2 熱希釈測定にタッチします。

3 注入液容量の値入力部にタッチし、使用する注入液容量（最大 20 mL）を選択します。

4 患者の病歴に従って、肺切除の選択肢入力部にタッチし、切除された肺部の選択肢（例：RUL=右上肺葉）を選択します。

5 ボラスセット開始にタッチします。

次の場合、ボラスセット開始ボタンは無効となっています:
・CVP が範囲外である。
・CVP が接続されていない。
・CVP のゼロ点調整が行われていない。
・注入液温度（Ti）プローブが接続されていない。
・血液温度（Tb）が測定されていない。
・注入液容量が無効または選択されていない。
・動脈圧センサーがフロートラックセンサーではない。
・血液温度ベースラインが分からない。
・TPTD のフォルトがある。

お待ちくださいがハイライトされます。血液温度ベースラインが確立されると、注入画面が表示されます。

6 画面に注入が表示されると、選択した容量の冷却注入液を迅速かつスムーズに注入します。

7 複数の測定が必要な場合、別の冷却注入液の入ったシリンジと交換します。

8 EV1000 画面で熱希釈ウォッシュアウト曲線と次の注入を開始の合図を確認します。

9 熱希釈ウォッシュアウト曲線が完了し、安定した血液温度ベースラインに達すると、EV1000 モニターにお待ちくださいと表示され、準備が完了すると注入が表示されます。ステップ 6、7、8 を最大 6 回繰り返します。
TPTD の編集とレビュー
ウォッシュアウト曲線をレビューし、ウォッシュアウト曲線を選択して削除することができます。

1. レビューにタッチします。
2. 削除したい各ウォッシュアウト曲線にタッチします。
 ウォッシュアウト曲線の上に赤い“X”が表示され、平均値からそれらが削除されます。

不規則であるまたは問題があるウォッシュアウトカーブは、データセットの横に！マークが表示されます。

![図 8-5 TPTD セットのレビュー](image)

3. レビュー終了後、有効化をタッチするとその平均値がボリュームビュー CO キャリブレーションとして使用され、また、TPTD 測定値を確認することができます。

![図 8-6 TPTD セットの有効化](image)

システムの再スタート
停電時等の場合、EV1000 は、ボリュームビュー使用時のキャリブレーションデータを一時保存する機能があります。もし 2 分以内に電源復旧した場合は、EV1000 はモニタリングを自動的に再開します。もし電源復旧に 2 分～4 時間を要した場合は、TPTD セットのスタート画面にて、最後にキャリブレーションした時の情報を再読み込みするかどうかを問う表示が画面上に現れます。